
Chapter 8

Evaluation

As defined in Chapter 4, the aims of this research are (1) to formalise event

reconstruction in a general setting, that is, assuming nothing specific about the

digital system under investigation or about the purpose of event reconstruction,

and (2) to show that this formalisation can be used to describe and automate

selected examples of digital forensic analysis. The first aim has been achieved

in Chapter 6. A formalisation of event reconstruction problem has been devel-

oped. It can be used to automate event reconstruction as follows.

1. Formalise the system under investigation as a finite state machine, and

formalise the evidence from the incident as an evidential statement;

2. use the event reconstruction algorithm from Chapter 7 to compute the

meaning of the evidential statement with respect to the finite state ma-

chine.

This chapter evaluates the usefulness of this method as a forensic analysis

technique, and demonstrates that it can be used to automate selected examples

of digital forensic analysis.

This chapter consists of three sections. Section 8.1 defines criteria for a

useful forensic analysis technique and applies them to the above-described

method of event reconstruction. The issues of effectiveness, efficiency, and

legal admissibility are discussed.

118



CHAPTER 8. EVALUATION

After that, Section 8.3 uses the developed formalisation of event reconstruc-

tion to automate two examples of digital forensic analysis. First, the simple

example of networked printer anlysis from Chapter 6 is given rigorous treat-

ment in Section 8.3.1. A more complex example is then described in Section

8.3.2, which formalises and automates forensic analysis from a published case

study.

Finally, Section 8.4 reviews the problems encountered in the examples and

draws conclusions about the usefulness of the developed formalisation of event

reconstruction.

8.1 Evaluation criteria

What constitutes a useful forensic analysis technique? As observed in Chapter

3, forensic analysis technique is expected to be both effective and efficient in

the type of analysis it performs. In addition, Chapter 2 argued that event

reconstruction in digital investigations should satisfy legal requirements to

expert evidence, such as Daubert criteria [30]. This gives us three criteria

against which to evaluate the event reconstruction method described in the

beginning of this chapter:

• Effectiveness. How complete and how accurate is the result of event

reconstruction?

• Efficiency. How much manual effort does event reconstruction involve,

and how long does it take to perform?

• Conformance to admissibility requirements. Does the event reconstruc-

tion method satisfy admissibility requirements?

The following sections discuss these criteria in more detail and evaluate how

the proposed method of event reconstruction satisfies these criteria.

119



CHAPTER 8. EVALUATION

8.1.1 Effectiveness of event reconstruction

From effectiveness point of view, formalised and automated event reconstruc-

tion offers several advantages over semi-formal event reconstruction techniques

described in Chapter 4.

Perhaps the major advantage is that formalisation and automation of event

reconstruction reduces the possibility of incorrect event reconstruction. If event

reconstruction is automatic, the analyst’s involvement into the reconstruction

process is limited. The analyst develops a model of the system and formalises

the evidence. The rest is automatic process. Although this does not guarantee

the absence of errors (errors, for example, can be introduced at the formal-

isation stage), it does remove the possibility of manual error during event

reconstruction. In addition, the experience of formal methods suggests that

“. . . Formal methods enhance existing review processes by encouraging rigor-

ous arguments of why and in what ways the specification is correct. . . . ” [66].

That is, the need to formalise the incident would encourage the analyst to

better understand the incident, which would reduce the possibility of errors.

The examples described in Section 8.3 confirm this hypothesis.

Completeness of event reconstruction is another advantage of formalised

event reconstruction. With the semi-formal event reconstruction techniques,

every sequence of events has to be constructed manually. As a result, all

possible sequences of events are rarely constructed. However, by computing

the meaning of a single evidential statement, the analyst obtains all possible

sequences of events that agree with the available evidence.

8.1.2 Efficiency of event reconstruction

To be useful in investigations, event reconstruction process should be suffi-

ciently quick. With the developed formalisation of event reconstruction, the

time required for event reconstruction is divided into the time spent on formal-

isation of the incident and the time spent on running the event reconstruction

120



CHAPTER 8. EVALUATION

algorithm.

The time required for formalisation of an incident is hard to estimate, be-

cause it depends on the circumstances of the incident. Note, however, that the

developed formalisation of event reconstruction is based on the same mathe-

matical principles as the existing methods for formal specification and verifi-

cation of computing systems. As a result, formalisation of incidents is likely to

require the same kind of effort as formal specification of computing systems.

The running time of the event reconstruction algorithm has been estimated

in Chapter 7. An upper bound on the algorithm’s running time is given by

the inequality 7.28. It is exponential in the size of the evidential statement1

and polynomial in the size of the finite state machine2. The exponential com-

plexity means that the algorithm may not be able to handle large evidential

statements with many observation sequences. This is a major problem limit-

ing its application in practical investigations. Development of a more efficient

event reconstruction algorithms is an important direction for future research.

On the other hand, the examples descried in Section 8.3 show that the event

reconstruction algorithm from Chapter 7 may still find practical applications

despite its exponential complexity.

8.1.3 Legal admissibility of event reconstruction

Reconstruction of past events in a computer system requires special knowledge

and, as such, falls into the category of expert evidence. The following para-

graphs give reasons why formalised and automated event reconstruction based

on the results of this research can pass such a test. To make the discussion

1 More precisely, it is exponential in the length of the evidential statement, max-
imal length of observation sequences, the value of infinitum, and the maximal
length of prefixes used for representing observed properties.

2 More precisely, it is polynomial in the size of the state space and the number of
possible events

121



CHAPTER 8. EVALUATION

more realistic, each of the following paragraphs addresses one of the Daubert

criteria from Chapter 2. Note that Daubert criteria are non-mandatory and

non-exclusive, that is, expert evidence may still be admissible, even if it does

not conform to some of the Daubert criteria3.

Can the technique be (and has it been) tested? The formalisation

of event reconstruction developed in this dissertation relies on a well known

mathematical apparatus to describe the incident and to perform event re-

construction. An algorithm for performing event reconstruction is provided.

This makes the results of event reconstruction repeatable and amenable to

independent verification by third-party experts. The formalisation of event

reconstruction developed in this dissertation has been tested on example prob-

lems using the method described in the beginning of this chapter. The results

of testing are described in Section 8.3.

What is the technique’s known (or possible) error rate? The error

rate associated with the developed method has not been measured. However,

as discussed in Section 8.1.1, its error rate is likely to be lower than the er-

ror rate of existing semi-formal event reconstruction techniques described in

Chapter 4.

If there are standards governing the application of the analysis tech-

nique, are they maintained? At the time of writing, there are no such

standards.

Has the technique been subjected to peer-review and publication?

The results of this research have been published in a peer-reviewed journal.

The paper [39] is given in Appendix D.

3 Ultimately, expert evidence is admissible if the judge is convinced that the un-
derlying methodology is scientifically valid.

122



CHAPTER 8. EVALUATION

If the technique is known in the relevant scientific community, is it

widely accepted? The results of this research are not widely known at the

time of writing, because the paper describing them has been published very

recently.

In summary, the formalisation of event reconstruction developed in this

dissertation provides sufficient basis for passing the admissibility test, because

it uses representation and analysis methods of a well known branch of science,

it has been published in a peer-reviewed journal, and it has been tested on

example problems described in the next chapter.

8.2 Comparison with other event reconstruc-

tion techniques

To conclude the first part of this chapter, Figure 8.1 compares the event recon-

struction method described in this dissertation with existing semi-formal event

reconstruction techniques described in Chapter 4. As the basis for comparison,

it uses the three criteria defined above. The attack trees are not shown in the

table, because a similar technique is already incorporated into MES technique.

As discussed in the previous sections, the method proposed in this dis-

sertation is more effective than semi-formal event reconstruction techniques,

but it has potentially lower efficiency, due to higher formalisation effort and

exponential complexity of the event reconstruction algorithm.

8.3 Examples of formalised and automated event

reconstruction

This section gives two examples of event reconstruction using the method

described in the beginning of this chapter. Section 8.3.1 formalises and au-

123



CHAPTER 8. EVALUATION

Figure 8.1: Comparison with other event reconstruction techniques

124



CHAPTER 8. EVALUATION

Figure 8.2: ACME Manufacturing LAN topology

tomates the simple example of networked printer anlysis from Chapter 6. A

more complex example is then described in Section 8.3.2, which formalises and

automates forensic analysis from a published case study.

8.3.1 Example 1. Networked printer analysis

This section illustrates the proposed formalisation of event reconstruction by

applying it to the fictional example of networked printer analysis from Section

6. First, for the reader’s convenience, the description of ACME investigation

is repeated. Then the analysis is completely formalised and solved using the

event reconstruction algorithm from Chapter 7.

Investigation at ACME Manufacturing

The dispute. The local area network at ACME Manufacturing consists of

two personal computers and a networked printer as shown in Figure 8.2. The

cost of running the network is shared by its two users Alice (A) and Bob (B).

Alice, however, claims that she never prints anything and should not be paying

for the printer consumables. Bob disagrees, he says that he saw Alice collecting

printouts. The system administrator, Carl, has been assigned to investigate

this dispute.

The investigation. To get more information about how the printer works,

Carl contacted the manufacturer. According to the manufacturer, the printer

125



CHAPTER 8. EVALUATION

works as follows:

1. When a print job is received from the user it is stored in the first unal-

located directory entry of the print job directory.

2. The printing mechanism scans the print job directory from the beginning

and picks the first active job.

3. After the job is printed, the corresponding directory entry is marked as

“deleted”, but the name of the job owner is preserved.

The manufacturer also noted that

4. The printer can accept only one print job from each user at a time.

5. Initially, all directory entries are empty.

After that, Carl examined the print job directory. It contained traces of two

Bob’s print jobs, and the rest of the directory was empty:

job from B (deleted)
job from B (deleted)

empty
empty
empty

. . .

The analysis. Carl reasons as follows. If Alice never printed anything, only

one directory entry must have been used, because printer accepts only one

print job from each user. However, two directory entries have been used and

there are no other users except Alice and Bob. Therefore, it must be the case

that both Alice and Bob submitted their print jobs at the same time. The

trace of the Alice’s print job was overwritten by Bob’s subsequent print jobs.

126



CHAPTER 8. EVALUATION

Automated analysis of ACME investigation

This subsection describes automated analysis of the print job directory us-

ing formalisation of event reconstruction developed in Chapter 6 and event

reconstruction algorithm from Chapter 7.

Formalisation of system functionality The first step is to describe sys-

tem functionality as a finite state machine. A suitable state machine was

shown in Figure 6.2. For the reader’s convenience it is reproduced again in

Figure 8.3. Given below is a justification for the states and events chosen.

The informal analysis of the incident given in the previous section makes

the following implicit assumptions about the incident

1. Alice and Bob have been the only users of the ACME Manufacturing

LAN, and that security of the LAN has not been compromised.

2. Printer has always worked according to the manufacturer’s description.

3. A directory entry that contains active or deleted print job is not “empty”.

4. The state of the print job directory is modified only by addition of new

print jobs, and by the printing mechanism fetching the print jobs from

the directory.

It follows from assumptions 1, 2, and 4 that each directory entry has only five

possible values: active job from Alice (A), active job from Bob (B), deleted

job from Alice (A deleted), deleted job from Bob (B deleted), and empty.

ENTRY = {A, B, A deleted, B deleted, empty}

It follows from Carl’s examination and assumptions 2 and 3 that only two

directory entries have ever been used. Thus, the set of states needs to represent

only the first two directory entries:

Q = ENTRY × ENTRY

127



CHAPTER 8. EVALUATION

Figure 8.3: Transition graph of the print job directory model

128



CHAPTER 8. EVALUATION

It also follows from assumptions 1, 2, and 4 that the state of the print job

directory is modified by only three possible events: submission of a print job

by Alice (add A), submission of a print job by Bob (Add B), and the fetching

of the first active print job by the printing mechanism (take).

I = {add A, add B, take }

Appendix C.4 presents formalisation of the state machine in ACL2 / Common

Lisp. The set of states Q is defined by the recogniser function statep. The

set of events I is defined by the recogniser function eventp. The transition

function, whose graph is shown in Figure 8.3, is implemented by function st.

The inverse transition function is implemented by function rev-st. It can be

proved in ACL2 theorem prover that, when rev-st is given a proper state y

it returns the list of all event-state pairs, whose next state according to st is

y. The following two ACL2 theorems formalise this statement.

(defthm correctness-of-rev-st-wrt-st

(implies

(and (statep s)

(eventp e)

(statep y)

(member-equal (list e s) (rev-st y)))

(equal (st e s) y)))

(defthm completeness-of-rev-st-wrt-st

(implies

(and (statep s)

(eventp e)

(equal y (st e s)))

(member-equal (list e s) (rev-st y))))

Formalisation of evidence Consider properties observed by the witnesses.

The initial state of the print job directory, which was observed by the printer

129



CHAPTER 8. EVALUATION

manufacturer, is described by the property

Pempty = {c | c ∈ CT , c
q
0 = (empty, empty) }

which says that both directory entries at the moment of observation are empty.

The final state of the printer, which was observed by Carl during printer ex-

amination, is described by the property

PB deleted = {c | c ∈ CT , c
q
0 = (B deleted,B deleted) }

which says that both directory entries at the moment of observation contain

deleted print jobs from Bob.

The complete “stories” told by Carl and the printer manufacturer are cap-

tured by two observation sequences. The first observation sequence describes

Carl’s story:

osCarl = ( (CT , 0, infinitum), (PB deleted, 1, 0) )

it says that Carl observed nothing about the state of the print job directory,

until he examined the printer and found that the first two directory entries

contained deleted print jobs from Bob.

The manufacturer story is that, initially, all directory entries were empty,

but then the printer was sold and nothing was observed about its subsequent

states:

osmanufacturer = ( (Pempty, 1, 0), (CT , 0, infinitum) )

These observation sequences form the evidential statement

esACME = ( osCarl , osmanufacturer )

The evidential statement combines the knowledge contained in the two obser-

vation sequences. The task of event reconstruction is to find all computations

130



CHAPTER 8. EVALUATION

that satisfy both observation sequences simultaneously.

Testing investigative hypotheses The purpose of event reconstruction is

usually to prove or disprove some claim about the incident. To disprove a claim

the investigator has to show that there are no explanations of evidence that

agree with the claim. To prove the claim the investigator has to show that all

explanations of evidence agree with the claim4. If there are some explanations

of evidence that agree with the claim, and some explanations of evidence that

disagree with the claim, the claim is neither proven nor disproven. Additional

evidence is required to eliminate the explanations that cause the uncertainty.

In the ACME investigation, the claim is that Alice never printed anything.

To formally disprove that claim, Carl has to show that all explanations of

the evidential statement esACME involve Alice printing something at one point

or another. A straightforward approach would be to compute all possible

explanations for esACME and check them all manually. However, this approach

is impractical if the number of explanations is large. An alternative approach is

to formulate the claim as an observation sequence, include it into the evidential

statement, and try to find explanations that agree with both the evidence and

the claim.

For example, Alice’s claim can be formalised as observation sequence, which

says that Alice did not print anything until Carl examined the printer:

PAlice = {c | c ∈ CT , (cq0)0 6= A ∧ (cq0)1 6= A }

osAlice = ( (PAlice , 0, infinitum), (PB deleted, 1, 0) )

The extended evidential statement for the ACME investigation is then

es ′ACME = (osAlice) · esACME

4 Note that this is equivalent to disproving the negation of the claim

131



CHAPTER 8. EVALUATION

If there are explanations of es ′ACME they must agree with both the evidence

and the Alice’s claim, which means that the claim may or may not be true. If,

however, there are no explanations of es ′ACME but there are some explanations

of esACME the claim must be false, because it makes evidential statement

inconsistent.

Choosing the value of infinitum The final step in formalisation of ACME

investigation analysis is to choose appropriate value of infinitum. Since the

running time of the event reconstruction algorithm is exponential in the value

of infinitum, the smallest possible value of infinitum should be chosen.

Recall that a run explaining an evidential statement must satisfy all ob-

servation sequences in it. As a result, if the maximal length of explaining run

can be determined for one observation sequence in the evidential statement,

then infinitum does not have to be bigger than that length.

Carl’s informal analysis suggests that Alice must be lying. It means that

the backtracing process started from the state (B deleted, B deleted) would

not be able to reach the initial state, because all paths to the initial state

would have states with Alice’s job in them.

Taking into account these two observations, it was decided to pick a small

initial value of infinitum and gradually increase it until the set of explanations

computed by solve-os for osAlice stops growing. This approach quickly proved

problematic because of loops in the transition graphs.

The problem is illustrated by Figure 8.4, which shows computations satis-

fying osAlice with infinitum = 2. Consider backtracing of computation

c = ( (take, (B deleted,B deleted) ), (take, (B deleted,B deleted) ), . . . )

Each transition in c represents attempt of the printing mechanism to take the

next print job from the empty print job directory. It does not change the state

of the print job directory, because the directory is empty. However, unless

132



CHAPTER 8. EVALUATION

B_DELETED, B_DELETED

B, B_DELETED

TAKE

A_DELETED, B_DELETED

ADD_B

B_DELETED, B_DELETED
ADD_B

B_DELETED, B_DELETED
TAKE

B_DELETED, B_DELETED
TAKE

B, B_DELETED
ADD_B

B, B_DELETED
TAKE

EMPTY, B_DELETED

ADD_B

B_DELETED, B

TAKE

B_DELETED, B
ADD_B

B_DELETED, B

TAKE

B, B

TAKE

Figure 8.4: Meaning of osAlice with infinitum = 2

there is external evidence of presence or absence of such a transition, there is

no reason to believe that it never happened, or that it happened once, twice,

or any other number of times. In osAlice there is no such evidence. Thus, the

event reconstruction algorithm dutifully reconstructs all possible sequences of

(take, (B deleted,B deleted) ) until the current value of infinitum is reached.

Another family of computations that cause the same problem are compu-

tations of the form

c = ( (Add B, (B deleted,B deleted) ), (take, (B,B deleted) ), . . . )

It represents printing of Bob’s documents after the system first entered the

state (B deleted,B deleted).

The problem was resolved by exploiting the nature of Alice’s claim. Recall

that the claim is that Alice never printed anything.

First observe that, if Alice had printed something, it would have changed

the state of the print job directory, because Alice’s print job would have been

added to the print job directory. Thus, all single transitions that do not change

133



CHAPTER 8. EVALUATION

B_DELETED, B_DELETED

B, B_DELETED TAKE

EMPTY, B_DELETED
ADD_B

EMPTY, B
TAKE

A_DELETED, B_DELETED
ADD_B

A_DELETED, B
TAKE

B_DELETED, B

TAKE

B, B
TAKE

Figure 8.5: Meaning of restricted Alice’s claim os ′Alice with infinitum = 3.

state of the print job directory can be excluded from the analysis.

Observe further that the truth or falseness of Alice’s claim is not af-

fected by the transition loops, which do not involve Alice printing some-

thing. The repetitive printing of Bob’s documents represented by the loop

( (Add B, (B deleted,B deleted) ), (take, (B,B deleted) ), . . . ) does not involve

Alice printing anything. It means that that particular loop can be excluded

from the analysis5.

Reflecting these insights, the property PAlice was extended with two addi-

tional restrictions:

P ′
Alice = {c | c ∈ CT ,

(cq0)0 6= A ∧ (cq0)1 6= A

cq0 6= cq1,

c0 6= (Add B, (B deleted,B deleted)) ∨ c1 6= (take, (B,B deleted))}

The first additional restriction cq
0 6= cq1 excludes from consideration single

transitions that do not change the state of the print job directory. The

second additional restriction c0 6= (Add B, (B deleted,B deleted)) ∨ c1 6=

(take, (B,B deleted)) excludes from consideration the printing of the Bob’s

print jobs after the print job directory first entered the state (B deleted,B deleted).

5 This must be formalised in such a way that it does not exclude computations
that exit halfway through the loop

134



CHAPTER 8. EVALUATION

The restricted Alice’s claim is described by observation sequence

os ′Alice = ( (P ′
Alice , 0, infinitum), (PB deleted, 1, 0) )

The set of explanations for the restricted Alice’s claim stabilises for the values

of infinitum >= 3. The set of computations that satisfy it for infinitum = 3 is

shown in Figure 8.5. Note that none of these computations begin in the state

(empty, empty).

The maximal length of explaining run for observation sequence os ′
Alice is

4. Thus, infinitum = 4 is sufficient for the evidential statement extended with

the restricted Alice’s claim

es ′′ACME = (os ′Alice) · esACME

However, to ensure that some explanations are produced for esACME , the value

of infinitum was increased to 6.

Running the automated test The code given in Appendix C.4 was run

and the computed meanings of evidential statements esACME and es ′′ACME were

manually checked. While the meaning of esACME contained single explanation

shown in Figure 8.6, the meaning of es ′′ACME was empty, which means that

Alice’s claim contradicts the evidence. The result of the automated analysis,

therefore, agrees with the informal analysis.

135



C
H

A
P

T
E

R
8
.

E
V
A

L
U

A
T

IO
N

B_DELETED, B_DELETEDB, B_DELETED
TAKE

A_DELETED, B_DELETED
ADD_B

A_DELETED, B
TAKE

A, B
TAKE

A, EMPTY
ADD_B

EMPTY, EMPTY
ADD_A

Figure 8.6: Meaning of evidential statement esACME with infinitum = 6

136



CHAPTER 8. EVALUATION

8.3.2 Example 2. Example of event time bounding

This section uses the developed formalisation of event reconstruction to anal-

yse correctness of investigative reasoning of a published case study [9]. More

specifically, this section analyses the proof that refutes the suspect’s alibi. The

proof is an example of event time bounding reasoning, which was described in

Section 3.2.3.

The example is organised into four parts. First, a description of the case

study is given. Second, event time bounding is formalised in terms of concepts

developed in Chapter 6. Third, a model of the system is created. Finally,

automatic event reconstruction followed by event time bounding are performed.

The automated analysis was able to detect several implicit assumptions, whose

validity is not justified in [9].

A blackmail investigation

The incident The following description, with some omissions, is taken from

[9]. “The police in the UK received a complaint from a Mr. C, alleging that he

was being blackmailed. The evidence was in the form of a floppy disk on which

was a word processor data file which contained number of allegations, threats

and demands. The floppy was known to be sent by a Mr. A, a computer con-

sultant and friend of Mr. C. Police officers immediately went to interview Mr.

A and found that he was on holiday abroad. However, his business premises

were open and a computer found there was seized for examination.

When Mr. A returned from holidays, he was interviewed, and admitted

sending the disk. He also admitted writing the letter found on his own ma-

chine but denied making the threats and demands. He suggested that Mr. C

had added these himself in order to discredit Mr. A . . . (skipped) . . . Mr. A

offered his full co-operation but suggested that care should be taken in the

investigation since during his absence on holidays, his computer was available

for Mr. C to use. It was therefore possible that Mr. C had used the computer

137



CHAPTER 8. EVALUATION

to introduce the threats and demands into the file on the floppy disk and this

may have left traces which might be misinterpreted as suggesting that Mr. A

had made them.”

Forensic examination and analysis The contents of Mr. A computer’s

hard drive was examined. A total of 17 recognisable fragments of the letter

located in various areas of the disk space were identified. One of the fragments

was a “clean” letter, without threats, stored in an active file. Other fragments

contained threats and were found in unallocated disk space.

It was concluded by the investigators that the fragments found in unallo-

cated space were deleted versions of the letter. The conclusion follows from

the fact that, when a file is deleted, FAT-based file systems do not erase the

content of clusters previously used by the deleted file.

The textual contents of the fragments was compared and it “enabled the

fragments to be placed in a unique sequence indicating precisely how the orig-

inal document had been created and subsequently edited through a number

of revisions [9].” The timestamps available in the file system indicated that

all modifications happened before Mr. A went on holiday. The timestamps,

however, were considered to be inconclusive. To fix the editing sequence in

time, a form of event time bounding was used instead.

The time bounding relied on the properties of so-called slack space, which

is unused space at the end of the last cluster of an active file. The formation

of slack space is illustrated in Figure 8.7. One of the blackmail fragments

was found in the slack space of another letter unconnected with the incident.

When the police interviewed the person to whom that letter was addressed,

he confirmed that he had received the letter on the day that Mr. A had gone

abroad on holiday. It was concluded that

“This fixed the whole sequence in time and showed Mr. A’s story

to be completely false. The threats and demands had been re-

introduced into the letter at least two days before Mr. A went on

138



CHAPTER 8. EVALUATION

Figure 8.7: Formation of the slack space

holiday – Mr. C could not have been involved [9].

Mr. A has pleaded guilty to the charge of blackmail but there are

many other complicating factors in this case and investigation are

continuing.”

The final piece of reasoning that stroke the final blow to the integrity of

Mr. A’s theory must have been that

1. The letter unconnected with the incident must have been written after

the letter with threats and demands, because of the way the slack space

is formed.

2. Since the letter unconnected with the incident was received on the day

the Mr. A had gone on holidays, it must have been written and posted

at least two days before (because of the way the postal service works).

3. Based on 1 and 2, the letter with threats and demands must have been

written before Mr. A went on holiday.

Note that the first step in this reasoning is event reconstruction, while the

second and the third steps are examples of event time bounding. Formalisation

of this reasoning is the subject of the next two sections.

139



CHAPTER 8. EVALUATION

Figure 8.8: Times of transitions

Section 8.3.2 shows how formalisation of event reconstruction can be ex-

tended with real times of observations, and how event time bounding can be

formalised in its context. Section 8.3.2 applies these results to the analysis

of blackmail investigation. The formal analysis identified some of the implicit

assumptions present in [9].

Formalisation of event time bounding

Assigning time to transitions and runs Real time can be introduced into

state machine model of Chapter 6 by associating real times with transitions in

style of [6].

Any run r is associated with |r| + 1 transitions. There are |r| transitions

into each computation of r and one transition out of the last computation of

r.

Transition times of a run. The sequence of transition times of a run r ∈ R

is denoted τ r. It consists of |τ r| elements.

|τ r| = |r|+ 1

All elements of τ r are real valued numbers. The relationship between elements

of τ r and computations of r is shown in Figure 8.8. The first element τ r
0

represents the time of transition into computation r0, the first computation of

run r. The last element τ r
|r| represents the time of transition out of computation

r|r|−1, the last computation of run r. An intermediate element τ r
i represents

140



CHAPTER 8. EVALUATION

the time of transition from computation ri−1 to computation ri. Elements of

τ r are ordered in time. For all integer i, such that 0 ≤ i < |r|,

τi < τi+1 (8.1)

If r is empty, then r corresponds to a single moment, whose time is τ r
0 .

The following definition formalises what is meant by a run happening before

another run.

Temporal precedence of runs A run ra precedes run rb in time, if the ending

time of ra is less than or equal to the beginning time of rb:

τ ra
|ra| ≤ τ rb

0

If ra and rb are sub-runs of some run rc, then positions of ra and rb in rc

can be used to determine temporal precedence between ra and rb.

Let i be the index of the first computation of ra in rc, and let j be the

index of the first computation of rb in rc, then

τ ra
|ra| = τ rc

i+|ra|

and

τ rb
0 = τ rc

j

Run ra precedes run rb if

τ ra
|ra| ≤ τ rb

0

or, equally,

τ rc
i+|ra| ≤ τ rc

j

which by definition of τ r is true if and only if

i+ |ra| ≤ j (8.2)

141



CHAPTER 8. EVALUATION

Times of observations Witness observations regarding time of events are

formalised as known times of observations.

Observation identifier. Observation identifier is a pair id = (i, j). It de-

notes observation ei,j at the j-th position of the i-th observation sequence of

evidential statement e.

Known time of observation. A known time of observation is a pair t =

(id , tim), where id = (i, j) is an observation identifier and tim is a real valued

number that represents time. The meaning of t is an assertion that for any

run r explaining observation ei,j , the following inequality holds

τ r
0 ≤ tim ≤ τ r

|r| (8.3)

A known time of observation corresponds to a witness statement that moment

tim happened during the witness’s observation. Such a statement may result

from human looking at a clock during observation, or from an operating system

appending clock reading to a log file entry.

Time bounding algorithm Time bounding algorithm uses known times

of observations to determine time boundaries for any given observation ei,j

within evidential statement. The idea of the algorithm is straightforward. An

observation ei,j can happen only after the latest of observations preceding ei,j

in time and only before the earliest of observations following ei,j in time.

The meaning of “preceding” and “following” observations is captured by

the “happened-before” relation defined as follows. An observation ei,j hap-

pened before observation ek,l if and only if in every sequence of partitioned

runs explaining e the run explaining ei,j precedes the run explaining ek,l. The

actual algorithm is based on the following two ideas.

1. Consider an sequence of partitioned runs spr that explains the evidential

statement e

spr = (pr 0, pr 1, . . . , prn)

142



CHAPTER 8. EVALUATION

By definition of explanation of evidential statement given in Chapter 6,

all elements of spr are partitionings of the same run r. That is, any ele-

ment of any pr i is a sub-run of r. As a result, the precedence between the

run that explains observation ei,j and the run that explains observation

ek,l can be established by comparing their starting and ending positions

within r.

2. The position of a sub-run that explains given observation ei,j can be cal-

culated directly from the corresponding MSPR returned by SolveES (e).

Let (C, lenlist) be such an MSPR. In any sequence of partitioned runs

represented by this MSPR, the indices of the first and last computation

of the (non-empty) run that explains observation ei,j are

j−1
∑

l=0

(lenlist i)j

and
(

j
∑

l=0

(lenlist i)j
)

− 1

respectively.

ACL2 code of the time bounding algorithm is given in Appendix C.5. It can

be divided into three parts: (1) utility functions, (2) calculation of the earliest

possible time for an observation, and (3) calculation of the latest possible time

for an observation.

Calculation of the earliest time consists of two parts. First, the set of ob-

servations bef that happened before given observation is determined. Second,

the maximal known time among observations in bef is found. Calculation of

the latest time is similar. First, the set of observations aft that happened af-

ter given observation is determined. Second, the minimal known time among

observations in aft is found.

The following paragraphs describes each part of the code in turn.

143



CHAPTER 8. EVALUATION

Utility functions. The algorithm uses four utility functions. Function

allobs returns list of all observation identifiers for the given observation se-

quence.

(defun allobs (obs m n)

(if (atom obs)

nil

(cons (list (nfix m) (nfix n))

(allobs (cdr obs) (nfix m) (+ (nfix n) 1)))))

The caller must specify index m of the given observation sequence obs in the

evidential statement. Counter n must be reset to 0.

Function alles returns list of all observation identifiers for the given evi-

dential statement.

(defun alles (es n)

(if (atom es)

nil

(append (allobs (car es) (nfix n) 0)

(alles (cdr es) (+ (nfix n) 1)))))

The caller must reset counter n to 0.

Function intersection-equal takes two lists x and y and returns a list

whose elements are members of both x and y.

(defun intersection-equal (x y)

(declare (xargs :guard (and (true-listp x) (true-listp y))))

(cond ((endp x) nil)

((member-equal (car x) y)

(cons (car x) (intersection-equal (cdr x) y)))

(t (intersection-equal (cdr x) y))))

Finally, function sumpref adds first n elements of the given list l.

144



CHAPTER 8. EVALUATION

(defun sumpref (n l)

(if (or (zp n) (atom l))

0

(+ (nfix (car l)) (sumpref (1- n) (cdr l)))))

If n is greater or equal to the length of l, function sumpref returns the

sum of all elements of l.

Calculation of the earliest time. The set bef of observations that

happened before observation with the given identifier is calculated using three

functions shown in Figure 8.9.

(defun befpm (pm cnt pos i j)

(if (atom pm)

nil

(if (<= (+ cnt (car pm)) pos)

(cons (list i j)

(befpm (cdr pm) (+ cnt (car pm)) pos i (+ j 1)))

(befpm (cdr pm) (+ cnt (car pm)) pos i (+ j 1)))))

(defun befpml (pos pml i)

(if (atom pml)

nil

(append (befpm (car pml) 0 pos i 0)

(befpml pos (cdr pml) (+ i 1)))))

(defun findbef (v bef i j)

(if (atom v)

bef

(findbef (cdr v)

(intersection-equal

bef

(befpml (sumpref j (nth i (car (cdr (car v)))))

(car (cdr (car v)))

0))

i j)))

Figure 8.9: Finding observations that happened before given observation

Function befpm takes an MPR pm and finds all runs whose last computa-

tion appears in the partitioned run before or at the position pos. A list of

145



CHAPTER 8. EVALUATION

observation identifiers corresponding to each of the runs is returned.

Function befpml applies befpm to every combination of (C, lenlist i in the

given MSPR pml. The lists returned by befpm are concatenated.

Function findbef processes a list of MSPRs. For each MSPR it deter-

mines the set of observations that happened before observation with the iden-

tifier (i, j). The determined sets are intersected with each other and with

parameter bef . The resulting set consists of observations that happened be-

fore observation with the identifier (i, j) in all MSPRs. In the initial call to

findbef, parameter bef must contain the list of all observation identifiers in

the evidential statement. Function alles is used for generating such a list.

To process a list of MSPRs, function findbef determines the beginning po-

sition of the run explaining observation ei,j and uses function befpml to find

identifiers of observations explained by runs that end before that position.

Once the set bef is calculated, the function maxtime shown in Figure 8.10

finds the latest known observation time among the elements of bef . It scans

the list of known times and pick the latest time whose observation identifier is

a member of bef .

Finally, the calculation of the set bef and finding the latest known time of its

elements is combined in function lbound, which calls functions findbef and

maxtime.

Calculation of the latest time. ACL2 code of this part of time bound-

ing algorithm is shown in Figures 8.11 and 8.12. It is very similar to the code

for calculating the earliest time. There are three differences with the code for

calculating the earliest time.

1. Function aftpm returns a list of indices of observations whose starting

positions in the given MPR pm are greater than or equal to the specified

position pos;

146



CHAPTER 8. EVALUATION

(defun maxtime (max l tim)

(if (atom tim)

max

(let ((time (car (cdr (car tim))))

(id (car (car tim))))

(if (not (member-equal id l))

(maxtime max l (cdr tim))

(if (null max)

(maxtime time l (cdr tim))

(if (< max time)

(maxtime time l (cdr tim))

(maxtime max l (cdr tim))))))))

(defun lbound (i j es v tim)

(maxtime nil

(findbef v (alles es 0) i j)

tim))

Figure 8.10: Calculating the earliest possible time of given observation

2. Function findaft calculates sumpref (j + 1) rather than sumpref (j),

because the result of sumpref (j + 1) is the position after the last com-

putation of the jth element of the ith element of listlen.

3. Function mintime picks the minimal known time among observations

whose elements are in the set aft .

Reliability of known times of observations Time bounding algorithm

presented above assumes the truth of all known times of observations. This

assumption simplifies reasoning by avoiding reasoning with uncertainty. This

assumption is acceptable, because known times can be introduced into analysis

gradually. First, time bounding can be performed with only the most reliable

known times. If the results of time bounding are unsatisfactory, it can be

repeated with less reliable known times included.

Reliability of time bounding results can be improved by checking consis-

tency of known times. All known times must respect happened-before ordering

imposed by the evidential statement. This can be checked by calculating the

147



CHAPTER 8. EVALUATION

(defun aftpm (pm cnt pos i j)

(if (atom pm)

nil

(if (<= pos cnt)

(cons (list i j) (aftpm (cdr pm) (+ cnt (car pm)) pos i (+ j 1)))

(aftpm (cdr pm) (+ cnt (car pm)) pos i (+ j 1)))))

(defun aftpml (pos pml i)

(if (atom pml) nil

(append (aftpm (car pml) 0 pos i 0)

(aftpml pos (cdr pml) (+ i 1)))))

(defun findaft (v aft i j)

(if (atom v)

aft

(findaft (cdr v)

(intersection-equal

aft

(aftpml (sumpref (+ j 1) (nth i (car (cdr (car v)))))

(car (cdr (car v)))

0))

i j)))

Figure 8.11: Finding observations that happened after given observation

earliest t
ei,j

min and the latest t
ei,j
max times for every observation ei,j in the evidential

statement. Every known time tim of observation ei,j must fall in between the

two calculated times t
ei,j

min ≤ tim ≤ t
ei,j
max.

Automated analysis of the blackmail investigation

Formalisation of the system functionality The first step is to define a

finite state machine that adequately describes the system under investigation.

In the blackmail example, the functionality of the last cluster of a file was

used to determine the sequence of events. Thus, the scope of the model can

be restricted to the functionality of the last cluster in a file.

The last cluster in a file can be modeled as an array of bits augmented with

a length (see Figure 8.13). The array of bits represents cluster data. The length

148



CHAPTER 8. EVALUATION

(defun mintime (min l tim)

(if (atom tim)

min

(let ((time (car (cdr (car tim))))

(id (car (car tim))))

(if (not (member-equal id l))

(mintime min l (cdr tim))

(if (null min)

(mintime time l (cdr tim))

(if (< time min)

(mintime time l (cdr tim))

(mintime min l (cdr tim))))))))

(defun ubound (i j es v tim)

(mintime nil

(findaft v (alles es 0) i j)

tim))

Figure 8.12: Calculation of the latest possible time of given observation

Figure 8.13: State machine model of the last cluster in a file

specifies how many bits from the beginning of the cluster are actually used by

the file. Although real clusters do not have any length field, the number of

data bits in the file’s last cluster can be calculated from the file length and

the known size of cluster in the file system. Zero length in the model would

represent unallocated cluster.

Unfortunately, the event reconstruction program described in Chapter 7

was unable to work with that cluster model, because of the need to explicitly

represent enormous number of possible states. It is noted in [11], that the size

of cluster on the hard drive of Mr. A’s computer was 16384 bytes. This results

in 2131072 possible distinct states of the cluster model.

Despite inability to conduct analysis of the full-sized model, it was decided

149



CHAPTER 8. EVALUATION

to continue analysis with a simplified model. The hope was that, although

properties of simplified model are not the same as the properties of the full-

sized model, it may still indicate some flaws in the investigative reasoning.

To make the cluster model tractable, the size of cluster was reduced to two

bits – the smallest cluster size in which slack space is possible. The state space

of the simplified model is defined by

BIT = {0, 1}

LENGTH = {0, 1, 2}

Q = LENGTH × BIT × BIT

In FAT-based file systems, the state of the last cluster can be changed by three

types of events: (a) direct writes into the cluster bypassing the file system, (b)

writes into the file to which the cluster is allocated, and (c) deletion of the file.

Each of these events is considered separately below.

Direct writes into the cluster. Alarmingly, there is no mentioning in

[9] that cluster content can be modified directly, for example by using a low-

level disk editor. It seems that an implicit assumption was made in [9] that Mr.

C could not have performed low-level changes on Mr. A’s computer. Reflecting

this assumption, direct writes have also been excluded from the model.

Writes into the file. When cluster is modified as part of the file, the new

data is written into consecutive locations starting from the beginning of the

cluster. In the simplified cluster model, there are only six possible sequences

that can be written into the two-bit cluster:

WRITE = {(0), (1), (0, 0), (0, 1), (1, 0), (1, 1)}

150



CHAPTER 8. EVALUATION

Apart from replacing one or two bits of data, every such event also modifies

the length of active data in the cluster.

Deletion of the file. After a file is deleted, the information about the

number of bits stored in the last cluster of the file sooner or later becomes

unavailable. This happens when the deleted file’s directory entry is reused by

another file, or when the FAT chain of the deleted file is broken.

To model this eventual loss of length, the deletion event del is introduced.

It sets the length of the model to zero. The set of all events in the simplified

cluster model is defined by

I = WRITE ∪ {del}

The ACL2 / Common Lisp implementation of the simplified cluster model is

given in the Appendix C.6. The set of states Q is defined by the recogniser

function statep. The set of events I is defined by the recogniser function

eventp. The transition function and its inverse are implemented by functions

st and rev-st respectively.

Automated analysis of the simplified model The exact evidential data

was not published in [9]. As a result, the specific cluster contents for the black-

mail letter and for the unrelated letter had to be chosen arbitrarily. Sequence

(1, 1) is chosen to represent the contents of the blackmail letter. Sequence

(0) is chosen to represent the contents of the unrelated letter. With these

choices, state (1, 0, 1) represent the final state discovered by investigators in

the blackmail investigation. The state describes a non-empty cluster whose

active content – the letter unrelated to investigation – is sequence (0), and

whose slack space contains the end of the blackmail letter – the sequence (1).

The observation of this state is captured by the following property:

Pfinal = { c | c ∈ CT , c
q
0 = (1, 0, 1)}

151



CHAPTER 8. EVALUATION

1, 0, 1

0, 0, 1

0

0, 1, 1
0

1, 0, 1 0

1, 1, 1

0

2, 0, 1

0

2, 1, 1

0

Figure 8.14: One step of event reconstruction of observation sequence osfinal

The observations about the cluster content made by investigators in the black-

mail investigation are formalised by the observation sequence osfinal :

osfinal = ( (CT , 0, infinitum), (Pfinal , 1, 0) )

It states that nothing was observed about the cluster’s content until forensic

examination, which found that the cluster was in the state (1, 0, 1).

Figure 8.14 shows the result of a single step of event reconstruction for the

observation sequence osfinal . The figure shows that, as expected, the current

active content of the cluster – (0) – was produced by writing it into the cluster.

However, there are two distinct situations, in which that writing could have

taken place. First, the cluster could have been unallocated before (0) was

written into it. This possibility is represented by transitions

(0, 1, 1)
(0)
→ (1, 0, 1)

(0, 0, 1)
(0)
→ (1, 0, 1)

Second possibility is that, the cluster was already allocated to the file, and

152



CHAPTER 8. EVALUATION

new value was written into it. That possibility is represented by transitions

(1, 1, 1)
(0)
→ (1, 0, 1)

(1, 0, 1)
(0)
→ (1, 0, 1)

(2, 1, 1)
(0)
→ (1, 0, 1)

(2, 0, 1)
(0)
→ (1, 0, 1)

Note the last two transitions. They suggest that the blackmail message in the

slack space was not caused by overwriting deleted blackmail message, but by

truncating the unrelated letter, which already contained the piece of the black-

mail letter! This however, does not change the conclusions of the investigators.

To complete formalisation of evidence two more observation sequences need

to be created. The first observation sequence os blackmail says that, at some point

in time, the piece of the blackmail letter was written into the cluster:

Pblackmail = { c | c ∈ CT , c
ι
0 = (1, 1) }

osblackmail =

( (CT , 0, infinitum),

(Pblackmail , 1, 0),

(CT , 1, infinitum) )

The minimal length of the last observation in os blackmail is set to 1 to exclude

the possibility that the writing of the blackmail coincided with the observation

of the final state.

The second observation sequence osunrelated says that the unrelated letter

was created at some time in the past, and that later it was received by the

person to whom it was addressed:

Punrelated = { c | c ∈ CT , c
ι
0 = (0) }

153



CHAPTER 8. EVALUATION

osunrelated =

( (CT , 0, infinitum),

(Punrelated , 1, 0),

(CT , 0, infinitum), (CT , 0, 0),

(CT , 1, infinitum) )

The zero-observation (CT , 0, 0) represents the reception of the letter by the

addressee.

The evidential statement for the blackmail example combines osfinal , osblackmail ,

and osunrelated :

esblackmail = ( osfinal , osunrelated , osfinal)

Once esblackmail was defined, infinitum was arbitrarily chosen to be 4, and the

reconstruction was performed. The code given in the Appendix C.6 saves

the result of reconstruction of es blackmail with infinitum = 4 to the constant

*SOL-4*.

The result of event reconstruction was then used to perform time bounding

of the blackmail writing. Since the exact time of reception of the unrelated

letter is not specified in [9], and since there is no other timed event in es blackmail

except the unrelated letter reception, the time of the reception was arbitrarily

chosen to be 5. The code that performs event time bounding is shown below:

(defconst *tim* ’(((1 3) 5)))

(defconst *l* (lbound 2 1 *ES-BLACKMAIL* *SOL-4* *tim*))

(defconst *u* (ubound 2 1 *ES-BLACKMAIL* *SOL-4* *tim*))

The outcome of this computation was that both variables *u* and *l* were

equal to NIL, which means that the algorithm was unable to determine nether

upper nor lower time bound for the blackmail writing. To investigate this

problem, the reconstruction results contained in *SOL-4* were examined. This

revealed that one of the possible explanations of es blackmail was the sequence

of transitions

. . .
(0)
→ (1, 0, 1)

(11)
→ (2, 1, 1)

(0)
→ (1, 0, 1)

154



CHAPTER 8. EVALUATION

This sequence of events suggests that someone could have framed Mr. A by

1. finding an unrelated letter, which was written by Mr. A earlier,

2. writing the last piece of the blackmail letter into the last cluster of the

unrelated letter,

3. writing the last piece of the unrelated letter back into the cluster.

This could have been easily accomplished using some low-level disk editor.

However, as was noted earlier, the possibility of using such tools seems to

be excluded from [9]. If ordinary text editing tools were used instead, this

result is unlikely, because text editors tend to save modified document in a

new file rather than modify the original6. Unfortunately, there is not enough

information in [9] about the system software to make any reliable assumptions.

To replicate the investigative reasoning, an assumption had to be forced

that the unrelated letter was written into the cluster only once. The modified

observation sequence and evidential statement are

Pno unrelated = { c | c ∈ CT , c
ι
0 6= (0) }

os ′unrelated =

( (Pno unrelated , 0, infinitum),

(Punrelated , 1, 0),

(Pno unrelated , 0, infinitum),

(Pno unrelated , 0, 0),

(Pno unrelated , 1, infinitum) )

es ′blackmail = ( osfinal , os ′unrelated , osfinal)

6 Microsoft Word, for example, does not modify the existing file. The changed
document is first written into a new file, then the original document is deleted
[1].

155



CHAPTER 8. EVALUATION

The automated analysis of es ′blackmail with infinitum = 4 yields the expected

result – that the upper time bound for the writing of the blackmail letter is

the time of reception of the unrelated letter.

8.4 Summary

The discussion presented in this chapter has demonstrated that formal ap-

proach to event reconstruction can be useful at least in some cases of digital

forensic investigations. Perhaps the most important benefit of formality is its

ability to focus attention of the analyst on the obscure detail, which in turn,

reduces the possibility of analytical error.

In the beginning of the chapter, three criteria for a useful forensic anal-

ysis technique have been put forward. They are efficiency, effectiveness, and

conformance to legal admissibility requirements. The approach to event re-

construction developed in this dissertation has been evaluated against these

criteria. It has been shown that the event reconstruction approach proposed

in this dissertation has better effectiveness than existing semi-formal event

reconstruction techniques, because it reduces error rate and provides compre-

hensive reconstruction of possible incident scenarios. At the same time, it has

potentially lower efficiency due to higher formalisation effort and exponential

complexity of the event reconstruction algorithm. In addition to this analysis,

two examples of formal event reconstruction have been performed.

The ACME investigation example has shown that devices with well de-

fined and relatively simple functionality can be successfully analysed using

developed approach. The most likely examples of such systems are controllers

embedded in consumer electronics and appliances. The continuing integration

of computing technology into human habitat is making forensic analyses of

such devices increasingly likely.

The blackmail example has shown that even incomplete model of the system

may be useful in the investigation. The need to formalise system functional-

156



CHAPTER 8. EVALUATION

ity combined with probing explorations of the state space forces the analyst

to consider many aspects of the system and the evidence, thus facilitating a

better understanding of the investigation. This, in turn, may suggest missed

assumptions or omissions in expert reasoning. The blackmail example was

able to detect two implicit, obscure assumptions in a published case study. It

suggests that formal analysis might be particularly useful for analysing expert

reports produced by the opposing party in legal proceedings.

In addition to exponential complexity of event reconstruction algorithm,

complexity of real world systems is also likely to be a major challenge for

formal event reconstruction. The event reconstruction approach presented in

this dissertation relies on automatic exploration of a finite state machine’s

state space to perform event reconstruction. The state machines considered in

this chapter are very simple. The ACME investigation, for example, required

creation of a finite state machine with only 25 states and 75 possible transitions.

Although similar cases are possible in real life, the majority of investigations is

likely to encounter systems, whose exact finite state machine models are much

more complex.

The relative success of model checking suggests that the complexity prob-

lem can be dealt with using model reduction techniques and symbolic represen-

tation of state sets. The investigation of the applicability of these techniques

in the domain of digital investigations is an important direction for future

research.

157


