
Chapter 7

Event reconstruction algorithm

The existing algorithms for analysis of finite state models of computing sys-

tems were developed for the purpose of systems verification [28]. The event

reconstruction problem formulated in Chapter 6 is different from verification

problems. Instead of checking that certain type of computations is impossible

in the system, event reconstruction aims to construct possible computations

that explain available evidence. As shown in Chapter 5, verification algorithms

avoid construction of computations for efficiency reasons. They cannot be used

directly to solve the event reconstruction problem.

This chapter describes an algorithm for solving the event reconstruction

problem. It computes the meaning of the given evidential statement with

respect to the given finite state machine. Since no such algorithm previously

existed, it was decided to construct a simple algorithm, whose properties can

be easily analysed. Performance improvement of the algorithm is left for future

work.

The algorithm is described in three steps. First, a procedure for comput-

ing the meaning of fixed-length observation sequences is presented. Second,

a procedure for computing the meaning of generic observation sequences is

presented. Third, it is shown how the meanings of individual observation se-

quences can be combined into the meaning of the evidential statement. An

94

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

upper bound on the running time of the event reconstruction algorithm is

then derived in Section 7.4, and a “proof-of-concept” implementation of the

algorithm is described in Section 7.5.

7.1 Computing the meaning of a fixed-length

observation sequence

Recall function Ψ−1 introduced in Section 6.2.4. It takes a set of computations

Y ⊆ CT and produces the set of all computations, whose tails are in Y . In

other words, it returns all possible backtracings of computations in Y .

Function Ψ−1 provides basic operation for automation of backtracing. To-

gether with set intersection, it can be used to calculate the meaning of ob-

servation sequences that consist of fixed-length observations only. The idea

is to take the set of all computations CT as the starting point and iteratively

backtrace it into the past using Ψ−1. At each step, computations that do not

possess observed property are discarded. This is achieved by intersecting the

set of backtracings with the set of computations that possess property ob-

served at the current step. The result of intersection is then used as input for

the next invocation of Ψ−1, and so on. The process continues until either all

observations are explained, or the set of computations becomes empty. Please

look at Figure 7.1, which illustrates this process for observation sequence

example = ((A, 3, 0), (B, 2, 0))

If the set of computations produced at the last step of reconstruction is

non-empty, its elements satisfy observation sequence example by construction.

The set of partitioned runs PRexample that explain example can be generated

from these computations using function ψ and the fixed length of observations

in example.

95

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

Figure 7.1: Finding explanations of a fixed-length observation sequence

96

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

1: function SolveFOS(fos)
2: Cnext ← CT

3: len ← ε
4: for i← (|fos| − 1) to 0 step -1 do
5: observation (P, l, 0)← fos i

6: len ← (l) · len
7: for j ← 0 to l − 1 step 1 do
8: C ← Cnext ∩ P
9: Cnext ← Ψ−1(C)

10: end for
11: end for
12: return (C, len)
13: end function

Figure 7.2: Computing the meaning of a fixed-length observation sequence

A map of partitioned runs (MPR) is a representation for a set of partitioned

runs. It is a tuple pm = (C, len) where C is the set of initial computations,

and len is a sequence of partition lengths. A single MPR represents the set of

all partitioned runs whose initial computation is in C, and whose partitions

have lengths len0, len1 , . . . len |len|−1. Observe that the meaning of a fixed

length observation sequence can be expressed by a single MPR.

The algorithm for computing the meaning of the given fixed-length obser-

vation sequence is presented in Figure 7.2. It implements the idea described

above and returns an MPR that expresses the meaning of the given fixed-length

observation sequence.

7.2 Computing the meaning of a generic ob-

servation sequence

The reconstruction process described above works, because the property ob-

served at every step is known. This is because the length of run satisfying a

fixed-length observation is equal to the observation’s min parameter. For a

generic observation o = (P, min, opt), whose opt 6= 0, the length of explain-

97

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

ing run is not fixed, but is bounded between min and min + opt . As a result,

single observation sequence represents many variants of linking observed prop-

erties to reconstruction steps. Consider, for example, observation sequence

example2 = ((A, 1, 3), (B, 1, 2)), which says that

• initially, property A was observed for at least 1 and at most 4 steps,

• then property B was observed for at least 1 and at most 3 steps.

This observation sequence represents twelve possible variants of linking prop-

erties to reconstruction steps:

AB ABB ABBB

AAB AABB AABBB

AAAB AAABB AAABBB

AAAAB AAAABB AAAABBB

Every one of these variants can be represented by a fixed-length observation

sequence. Note that the meaning of example2 is the union of explanations of

each variant. Thus, the meaning of example2 can be calculated in three steps:

1. Convert example2 to a set of fixed-length observation sequences.

2. Calculate the meaning of each fixed-length observation sequence as de-

scribed above.

3. Calculate the union of explanations of the fixed-length observation se-

quences.

Observe that the meaning of example2 can be represented as a set of MPRs

— each MPR representing the meaning of one of the fixed-length observation

sequences.

The algorithm for computing the meaning of a generic observation sequence

is given in Figure 7.3. The algorithm consists of two parts. First, lines 2–13

convert the given observation sequence os into a set of fixed-length observation

98

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

1: function SolveOS(os)
2: F ← {ε}
3: for i← 0 to |os| − 1 step 1 do
4: observation (P, min, opt)← os i

5: Fnew ← ∅
6: for each partially constructed sequence f in F do
7: for j ← 0 to opt step 1 do
8: fnew ← f · ((P, min+ j, 0))
9: Fnew ← Fnew ∪ {fnew}

10: end for
11: end for
12: F ← Fnew

13: end for
14: PM os ← ∅
15: for each fos in F do
16: pm ← SolveFOS (fos)
17: PM os ← PM os ∪ {pm}
18: end for
19: return PM os

20: end function

Figure 7.3: Computing the meaning of a generic observation sequence

sequences F . After that, lines 14–18 use SolveFOS algorithm to compute the

meaning of each fixed-length observation sequence in F . The resulting set of

MPRs is returned in line 19.

7.3 Computing the meaning of an evidential

statement

The meaning of an evidential statement can be computed using a two-step

procedure. First, the meanings of individual observation sequences are com-

puted as described in the previous sections. Then the meanings of observation

sequences are combined into the meaning of the entire evidential statement.

To combine the meanings of observation sequences, note that, to satisfy

the evidential statement, a run must satisfy all of its observation sequences.

99

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

Thus, the problem is to identify the subset of runs, whose partitionings are

present in the meanings of all observation sequences.

Let pma = (lena, Ca) and pmb = (lenb, Cb) be two MPRs. A run r can

be partitioned by both pma and pmb if and only if two conditions hold:

1. the initial computation of run r belongs to the initial computation sets

of both MPRs: r ∈ Ca and r ∈ Cb, and

2. both MPRs have equal total number of computation steps: Σ lena =

Σ lenb.

Clearly, if Σ lena 6= Σ lenb, then the lengths of all computations represented by

pma are different from the lengths of all computations represented by pm b, and

two MPRs have no common runs. Otherwise, the common runs are determined

by the common set of initial computations Ca ∩ Cb.

A map of sequence of partitioned runs (MSPR) spm = (C, (len0, . . . , lenn))

is a representation for a set of sequences of partitioned runs. C is the set of

initial computations, and len0, . . . lenn are lists of lengths that describe how

to partition runs generated from the elements of C. MSPR is proper if and

only if Σ len0 = . . . = Σ lenn.

The combination of two MPRs is defined by function comb that takes two

MPRs and returns a proper MSPR:

comb(pma, pmb) =

∅ , if Σ lena 6= Σ lenb or

Ca ∩ Cb = ∅

(Ca ∩ Cb, (lena, lenb),) , otherwise

Suppose that the meanings of two observation sequences osa and osb are repre-

sented by two sets of MPRs called PM a and PM b respectively. The meaning of

evidential statement es = (osa, osb) is expressed by the set of proper MSPRs,

which is obtained by combining every MPR from PM a with every MPR from

100

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

1: function SolveES(es)
2: SPM es ← ∅
3: os ← es0

4: PM os ← SolveOS (os)
5: for each pm = (C, len) in PM os do
6: SPM es ← SPM es ∪ {(C, (len))}
7: end for
8: for i← 1 to |es| − 1 step 1 do
9: os ← es i

10: PM os ← SolveOS (os)
11: SPM new ← ∅
12: for each spm = (Ca, lenlist) in SPM es do
13: for each pm = (Cb, len) in PM os do
14: C ← Ca ∩ Cb

15: if C 6= ∅ and Σlen = Σlenlist0 then
16: SPM new ← SPM new ∪ { (C, lenlist · (lena)) }
17: end if
18: end for
19: end for
20: SPM es ← SPM new

21: end for
22: return SPM es

23: end function

Figure 7.4: Computing the meaning of an evidential statement

PM b :

for all x ∈ PM a, for all y ∈ PM b, SPM es = ∪ comb(x, y)

This process can be extended to arbitrary number of observation sequences,

thus providing a way to calculate meaning of an arbitrary evidential statement.

The corresponding event reconstruction algorithm is given in Figure 7.4. The

operation of the algorithm is divided into two parts. First, lines 2–7 compute

the meaning of the first observation sequence in the evidential statement and

make it the initial value for SPM es . After that, the loop in lines 8–21 computes

the meaning of the remaining observation sequences in the evidential statement

and combines their meanings with SPM es .

101

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

7.4 Running time of event reconstruction al-

gorithm

This section derives an upper bound1 on the running time of the event recon-

struction algorithm SolveES described in the previous section.

7.4.1 Prefix based representation of computation sets

The running time of the event reconstruction algorithm cannot be estimated

without first estimating the running time required for its basic operations

Ψ−1(X) and X ∩ Y . Their running times, in turn, depend on the chosen

representation of computation sets.

For the purpose of this analysis, a prefix based representation of computa-

tion sets has been adopted. A prefix based representation of a computation

set is a list

LX = (x0, . . . , x|LX |−1)

where xi ∈ CT , and |xi| > 0.

The elements of LX are called prefixes. Each prefix represents the set

of all computations that begin with it. For example, the list of prefixes

((a, b, c), (d, e)) represents the set of all computations of the forms (a, b, c, . . .)

or (d, e, . . .). 2 This set includes, for example, computations (a, b, c), (a, b, c, d),

(a, b, c, e, d), (d, e), (d, e, a). More precisely, the set of computations repre-

1 Note that O-notation is not used in this section. This is because the running
time of the event reconstruction algorithm depends on six parameters, and (since
it is not clear which parameter grows faster) the use of O-notation does not bring
much clarity into the resulting expression.

2 Symbols a, b, c, d, and e stand for state–event pairs of the form (q, ι), where
q ∈ Q and ι ∈ I.

102

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

sented by a list of prefixes LX is

X =

|LX |−1
⋃

i=0

{ c | c ∈ CT , |xi| ≤ |c|, and for all integer 0 ≤ j < |xi| : cj = (xi)j }

Appendix B discusses properties of the prefix based representation and gives

algorithms for computing Ψ−1(X) and X ∩ Y of sets of computations repre-

sented as lists of prefixes. To derive an upper bound on the running time of

the event reconstruction algorithm, note that the prefix based representations

have the following properties.

Prefix based representation of CT . The set CT can be represented as

a list of all possible singleton prefixes LCT
, whose length is

|LCT
| = |Q||I| (7.1)

where |Q| and |I| are sizes of sets of states and events respectively.

Size of prefix based representations with limited lengths of pre-

fixes. Any set of computations Pm that restricts only the first m elements

of its member computations can be represented by a list LPm
, whose length is

bounded by the number of all possible computation prefixes of length m:

|LPm
| ≤ |Q||I|m (7.2)

except for m = 0.

Checking set emptiness is a constant time operation. Checking

emptiness of a set of computations C represented as a list of prefixes LC

amounts to checking emptiness of LC , which can be performed in constant

time.

103

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

Upper bound on the time required to compute set intersection.

The time tX∩Y required to compute the set intersection of two computation

sets X and Y represented as lists of prefixes LX and LY is bounded by

tX∩Y ≤ cm|LX ||LY | (7.3)

where c is an implementation-dependent constant, and m is the length of the

longest prefix in either LX or LY .

Upper bound on the length of the output of set intersection. The

length |LX∩Y | of the list of prefixes that represents the set intersection of two

computation sets X and Y is bounded by

|LX∩Y | ≤ |LX ||LY | (7.4)

where |LX | and |LY | are lengths of lists of prefixes that represent sets X and

Y respectively.

Upper bound on the time required to compute Ψ−1(X). The time

required to compute Ψ−1(X) is bounded by

tΨ−1(X) ≤ c|Q||I||LX | (7.5)

where c is an implementation dependent constant, |LX | is the length of the list

of prefixes that represents the set X, and |Q| and |I| are sizes of sets of states

and events respectively.

Upper bound on the length of the output of Ψ−1(X). The length

|LΨ−1(X)| of the list of prefixes that represents the output of Ψ−1(X) is bounded

by

|LΨ−1(X)| ≤ |Q||I||LX | (7.6)

104

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

where |LX | is the length of the list of prefixes that represents the set X, and

|Q| and |I| are sizes of sets of states and events respectively.

7.4.2 An upper bound on the running time of SolveFOS

First, note that operations in lines 1–7 and 10–12 of the SolveFOS algorithm

can be implemented to take constant time. The running times of lines 8 and

9 are bounded by inequalities 7.3 and 7.5 respectively.

Let lmax be an upper bound on the lengths of observations in the input

observation sequence fos

for all 0 ≤ i < |fos|, li ≤ lmax (7.7)

where li is the length of the ith observation in fos .

Let p be an upper bound on the length of prefixes used in prefix based

representations of all observed properties in fos . Then, according to the in-

equality 7.2, the lengths of prefix based representations of observed properties

are bounded by

for all 0 ≤ i < |fos|, |LPi
| ≤ |Q||I|p (7.8)

where LPi
is a prefix based representation of the observed property Pi of the

ith observation in fos .

The running time of SolveFOS is equal to the following sum

tSolveFOS = c1 +

|fos|−1
∑

i=0

(

c2 +

li−1
∑

j=0

(

c3 + tbacktrk

)

)

(7.9)

where

• c1 represents the constant time spent in lines 1–3, 12, and in loop setup

in line 4,

105

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

• c2 represents the constant time spent in every iteration of the outer loop

in lines 4–6, 11, and in loop setup in line 7,

• c3 represents the constant time spent in every iteration of the inner loop

in lines 7 and 10,

• tbacktrk
represents the time of the kth reconstruction step performed in

lines 8 and 9, where k = j +
∑|fos|−1

n = i+1 ln, where ln is the length of the

nth observation in fos .

The running time of the kth reconstruction step is the sum of the running

times of set intersection and backtracing. By monotonicity of addition and by

inequalities 7.3 and 7.5, it is bounded by

tbacktrk
≤ c4p|LCnextk

||LPi
|+ c5|Q||I||L(Cnextk

∩Pi)| (7.10)

where

• Cnextk
is the “input” set of computations at the kth reconstruction step,

• li is the length of observation fos i,

• Pi is the observed property of observation fos i,

• c4 and c5 are implementation dependent constants

Observe that the right-hand side of inequality 7.10 depends on the lengths of

representations LCnextk
and L(Cnextk

∩Pi). To compute these values, note that

Cnextk+1
is linked with Cnextk

according to the following recurrence

Cnext0 = CT

Cnextk+1
= Ψ−1(Cnextk

∩ Pi)

An upper bound on the length of LCnextk+1
can be derived from this recurrence

106

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

using equation 7.1 and inequalities 7.4, and 7.6:

|LCnext0
| = |LCT

| = |Q||I|

|LCnextk+1
| ≤ |Q||I|(|LCnextk

||Q||I|p)

Solving this recurrence for k produces

|LCnextk
| ≤ |Q||I|(|Q|2|I|p+1)k = |Q|2k+1|I|kp+k+1 (7.11)

After substituting this result into the inequality 7.10, replacing |LPi
| and

|L(Cnextk
∩Pi)| according to inequalities 7.8 and 7.4, and simplifying, the upper

bound on the time of the kth reconstruction step becomes

tbacktrk
≤ (c4p+ c5|Q||I|)(|Q|

2(k+1)|I|(k+1)(p+1)) (7.12)

An upper bound on the running time of SolveFOS can be obtained from the

right-hand side of equation 7.9 by replacing tbacktrk
and li according to inequal-

ities 7.12 and 7.7. After simplification, it becomes

tSolveFOS ≤ Λ + (c4p+ c5|Q||I|)

(

(|Q|2|I|p+1)|fos|lmax+1 − (|Q|2|I|p+1)

(|Q|2|I|p+1)− 1

)

(7.13)

where

Λ = c1 + c2 |fos|+ c3 |fos| lmax

An upper bound on the length of the output of SolveFOS can be derived from

the upper bound on the length of LCnextk
at the last step of event reconstruction

using inequalities 7.11 and 7.4. After simplification, the resulting upper bound

is

|LSolveFOS | ≤ (|Q|2|I|p+1)|fos|lmax (7.14)

107

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

7.4.3 An upper bound on the running time of SolveOS

First, note that operations in lines 1–15 and 17–19 of the SolveOS algorithm

can be implemented to take constant time. The execution of the line 16 requires

time, whose upper bound is given by inequality 7.13.

Second, note that by definition of infinitum given in Chapter 6, the length

of any computation that may have happened during the incident is bounded by

infinitum. As a result, the length of any observation made during the incident

is also bounded by infinitum, and

for all 0 ≤ i < |os| (min i + opt i) ≤ infinitum (7.15)

where min i and opt i are min and opt parameters of the ith observation in the

input observation sequence os .

The running time of SolveOS is equal to the following sum

tSolveOS = c6 +

|os|−1
∑

i=0

(c7 +

|Fi|−1
∑

l=0

(c8 +

opti
∑

j=0

c9)) +

|F|os||−1
∑

l=0

(c10 + tSolveFOS) (7.16)

where

• c6 represents the constant time spent in lines 1–2, 14, and 19, and in

loop setups in lines 3 and 15,

• c7 represents the constant time spent in every iteration (of the loop in

lines 3–13) in lines 3–5, 12–13, and in loop setup in line 6

• c8 represents the constant time spent in every iteration (of the loop in

lines 6–11) in lines 6, and 11, and in loop setup in line 7,

• c9 represents the constant time spent in every iteration of the inner loop

in lines 7–10,

• Fi is the set of partially constructed fixed-length observation sequences

at the beginning of the ith iteration of the loop in lines 3–13,

108

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

• F|os| is the final set of fixed-length observation sequences produced by

the (|os| − 1)th iteration of the loop in lines 3–13,

• c10 represents the constant time spent in every iteration (of the loop in

lines 15–18) in lines 15, 17, and 18.

The time of the ith iteration of the outer loop in lines 3–13 depends on the size

of Fi generated in the previous iteration. To obtain an upper bound on the

size of Fi note that every iteration of the inner loop in lines 7–10 creates one

new element for Fi+1, and that opt i is bounded by the inequality 7.15. Thus,

the size of Fi is bounded by the following recurrence

|F0| = 1

|Fi+1| ≤ |Fi|infinitum

Solving this recurrence for i produces

|Fi| ≤ infinitum i (7.17)

An upper bound on tSolveOS can be derived from 7.16 by replacing |Fi| and opt i

using inequalities 7.17 and 7.15. The resulting inequality after simplification

becomes

tSolveOS ≤ c6 + c7 |os|+ (c8 + c9 infinitum)

(

infinitum |os|+1 − 1

infinitum − 1

)

+

infinitum|os|
∑

l=0

(c10 + tSolveFOS) (7.18)

Note that the length of any fixed-length observation sequence fos in F|os| is

the same as the length of the original observation sequence:

|fos| = |os|

and that the length l of any observation in fos is bounded by inequality 7.15.

109

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

As a result, tSolveFOS in the right hand side of 7.18 can be replaced with the

right hand side of inequality 7.13 with |fos| replaced by |os| and lmax replaced

by infinitum. After simplification the resulting inequality becomes

tSolveOS ≤ c6 + c7 |os|+ (c8 + c9 (infinitum + 1))

(

infinitum |os| − 1

infinitum − 1

)

+ c10 infinitum |os| + Υ (7.19)

where Υ represents the time spent on computing the meanings of individual

fixed-length observation sequences:

Υ = infinitum |os|

(

c1 + c2 |os |+ c3 |os| infinitum

+ (c4p+ c5|Q||I|)

(

(|Q|2|I|p+1)|os| infinitum + 1 − (|Q|2|I|p+1)

(|Q|2|I|p+1)− 1

))

An upper bound on the number of elements in the output of SolveOS can be

derived as follows. Note that each iteration of the loop in lines 15–18 creates

one element of the output set. Thus, by inequality 7.17, the number of elements

in the output of SolveOS is bounded by

|SolveOS (os)| ≤ infinitum |os| (7.20)

7.4.4 An upper bound on the running time of SolveES

First, note that operations in lines 1–3, 5–9, 11–13, and 15–22 of the SolveES

algorithm can be implemented to take constant time. The running times of

lines 4 and 10 are bounded by inequality 7.19. The running time of line 14 is

bounded by inequality 7.3.

Let osmax be the upper bound on the lengths of observation sequences in

110

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

the input evidential statement es

for all 0 ≤ i < |es|, |es i| ≤ osmax (7.21)

where es i is the ith observation sequence in es .

The running time of the event reconstruction algorithm SolveES depends

on the number of observation sequences in the evidential statement es . For

the purpose of the worst case analysis, it suffices to consider only evidential

statements that consist of two or more observation sequences (i.e. 2 ≤ |es|),

in which case the running time of SolveES is bounded by the following sum

tSolveES ≤ c11 + tSolveOS(es0) +

|SolveOS(es0)|−1
∑

i=0

c12

+

|es|−1
∑

i=1

(

c13 + tSolveOS(esi) +

|SPM i|−1
∑

j=0

(

c14 +

|SolveOS(esi)|−1
∑

l=0

(c15 + t(Caj i
∩Cbl

))
)

)

(7.22)

where

• c11 represents the constant time spent in lines 1–3, 22, and in loop setups

in lines 5 and 8,

• c12 represents the constant time spent in every iteration of loop in lines

5–7,

• c13 represents the constant time spent in every iteration (of the loop in

lines 8–21) in lines 8–9, 11, 20–21, and in loop setup in line 12,

• c14 represents the constant time spent in every iteration (of the loop in

lines 12–19) in lines 12, 19, and in loop setup in line 13,

• c15 represents the constant time spent in every iteration (of the loop in

lines 13–18) in lines 13, and 15–18,

111

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

• SPM i is the value of SPM es at the beginning of the ith iteration of the

loop in lines 8–21; it is the set of MSPRs obtained by combining the first

i elements of es ,

• tSolveOS(esi) represents the time spent on computing the meaning of the

ith element of the evidential statement es ,

• t(Caj i
∩Cbl

) represents time spent on computing set intersection of the com-

putation sets of spm and pm on the ith iteration of the loop in lines 8–21,

on the jth iteration of the loop in lines 12–19, and on the lth iteration of

the loop in lines 13–18.

An upper bound on the running time of SolveES can be derived from the equa-

tion 7.22 using inequalities 7.21, 7.3, 7.19, 7.20, and 7.14. After replacing |es i|

and |SolveOS (es i)| according to inequalities 7.21 and 7.20 respectively, moving

common factors to the outside of summations, and initial simplification, the

upper bound becomes

tSolveES ≤ c11 + c12 infinitumosmax + c13 (|es| − 1) +

|es|−1
∑

i=0

tSolveOS(esi)

+

|es|
∑

i=1

(

|SPM i|
∑

j=0

(

c14 +

infinitumosmax

∑

l=0

(c15 + t(Caj i
∩Cbl

))
)

)

(7.23)

The value of the triple-nested sum depends on |SPM i| and on the time t(Caj i
∩Cbl

).

To derive an upper bound on |SPM i| note that the loop in lines 13–18 creates

at most |SolveOS (es i)| elements of SPM i+1 for each element of SPM i. Since

the value of |SolveOS (es i)| is bounded by the inequality 7.20, the value of

|SPM i| is bounded by the following recurrence

|SPM 1| ≤ infinitumosmax

|SPM i+1| ≤ |SPM i| infinitumosmax

112

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

Solving this recurrence for i produces

|SPM i| ≤ infinitum i osmax (7.24)

The time t(Caj i
∩Cbl

) is bounded by the inequality 7.3

t(Caj i
∩Cbl

) ≤ c16 |LCaj i
| |LCbl

| infinitum (7.25)

where c16 is an implementation dependent constant.

Since Cb is produced by SolveOS , the size of LCbl
is bounded by the in-

equality 7.14. The size of LCaj i
depends on the previous iterations of the loop

in lines 8–21, because each spm in SPM i+1 is obtained by combining one ele-

ment of SPM i with one element of output of SolveOS (es i). Thus, the size of

LCaj i
is bounded by the following recurrence

|LCaj 1

| ≤ |LSolveFOS |

|LCaj i+1

| ≤ |LCaj i
| |LSolveFOS |

Solving the recurrence for i produces

|LCaj i
| ≤ |LSolveFOS |

i (7.26)

Substituting this bound into 7.25 and simplifying it using inequalities 7.21,

7.15, and 7.14 produces

t(Caj i
∩Cbl

) ≤ (|Q|2|I|p+1)(i+1) |osmax | infinitum (7.27)

An upper bound on the running time of the event reconstruction algorithm

can be obtained from the inequality 7.23 by replacing t(Caj i
∩Cbl

), SPM i, and

tSolveOS(esi) according to inequalities 7.27, 7.24, and 7.19, and simplifying. The

resulting upper bound on the running time of the event reconstruction algo-

113

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

rithm is

tSolveES ≤ c11 + c12 infinitumosmax + A + B + Γ (7.28)

where A approximates the time spent on converting individual observation

sequences of into sets of fixed-length observation sequences

A = |es|

(

(

c8 + c9 (infinitum + 1)
)

(

infinitumosmax − 1

infinitum − 1

)

+ c6 + c7 osmax + c10 infinitumosmax

)

B approximates the time spent on computing the meaning of the fixed length

observation sequences

B = |es| infinitumosmax

(

(c4p+c5|Q||I|)

(

(|Q|2|I|p+1)osmax infinitum + 1 − (|Q|2|I|p+1)

(|Q|2|I|p+1)− 1

)

+ c1 + osmax (c2 + c3 infinitum)

)

Γ approximates the time spent on combining the meanings of observation

sequences

Γ =

(

infinitum (|Q|2|I|p+1)infinitum
)(|es|+1) osmax −

(

infinitum (|Q|2|I|p+1)infinitum
)2 osmax

(

infinitum (|Q|2|I|p+1)infinitum
)osmax − 1

+

(

infinitum(|es|−1) osmax − 1
)(

c14 + c15 infinitumosmax

)

infinitumosmax

infinitumosmax − 1

In summary, assuming that the event reconstruction algorithm uses prefix

based representation of computation sets, its running time is no more than ex-

ponential in the length of evidential statement, maximal length of observation

sequences, the value of infinitum and the maximal length of prefixes used for

representing observed properties. At the same time, the running time is no

more than polynomial in the size of the state space and the number of possible

events.

114

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

7.5 Implementation of the event reconstruc-

tion algorithm

The event reconstruction algorithm has been implemented as a “proof-of-

concept” Common Lisp program, whose source code is collectively given by

the Appendices C.2, C.3, and C.7. It was developed using CMU Common

Lisp 18c running on a Pentium PC. This section describes the interface of the

program.

The program provides a set of constants, macros, and functions for defining

observation sequences and evidential statements, computing their meaning,

and visualising the results of event reconstruction.

Observed properties are defined using two macros: defprop1 and defprop2.

Macro (defprop1 name1 (c0) exp1) defines constant with name name1

that represents the set of computations, whose first element c0 satisfies logical

expression exp1. Formally, it defines property of the form Pname1 = {c | c ∈

CT , exp1 (c0)}.

Macro (defprop2 name2 (c0 c1) exp2) defines constant with name name2

that represents the set of computations, whose first element c0 and second ele-

ment c1 satisfy logical expression exp2. Formally it defines property Pname2 =

{c | c ∈ CT , exp2 (c0, c1)}.

Observation sequences are represented by Lisp lists. For example, observa-

tion sequence example2 from Section 7.3 can be defined as follows:

(defprop1 *A* (c0) ...)

(defprop1 *B* (c0) ...)

(defconst *EXAMPLE2* ‘((,*A* 1 2) (,*B* 1 3)))

The meaning of observation sequence is computed using function solve-os.

It takes an observation sequence and returns a list of MPRs that describes

the meaning of the given observation sequence. For example, the meaning of

example2 is computed by

115

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

B_DELETED, B_DELETED

B, B_DELETED TAKE

EMPTY, B_DELETED
ADD_B

EMPTY, B
TAKE

A_DELETED, B_DELETED
ADD_B

A_DELETED, B
TAKE

B_DELETED, B

TAKE

B, B
TAKE

Figure 7.5: Sample output of the program

(solve-os *EXAMPLE2*)

Evidential statements are represented by Lisp lists. For example, the evi-

dential statement es = (os1 , os2) can be defined as follows

(defconst *OS1* ...)

(defconst *OS2* ...)

(defconst *ES* ‘(,*OS1* ,*OS2*))

The meaning of evidential statement is computed using function solve-es.

It takes an evidential statement as input and returns a list of MSPRs that

describe the meaning of the given evidential statement. For example, the

meaning of es is computed by

(solve-es *ES*)

To visualize the meaning of evidential statement, function draw is provided.

It takes the meaning of evidential statement and creates a tree of possible

scenarios3. An example tree is shown in Figure 7.5 of the incident.

7.6 Summary

This chapter presented an algorithm for event reconstruction based on the for-

malisation of event reconstruction given in Chapter 6. The algorithm performs

event reconstruction in three major steps:

3 The output of draw is a file for DOT utility [37]. The latter should be manually
invoked to draw the tree.

116

CHAPTER 7. EVENT RECONSTRUCTION ALGORITHM

1. Convert all observation sequences in the evidential statement into sets

of fixed-length observation sequences.

2. Compute the meanings of the resulting fixed-length observation sequences.

3. Combine the meanings of the fixed-length observation sequences into the

meaning of the evidential statement.

The running time of the algorithm has been analysed. The derived upper

bound on the running time of the algorithm is exponential in the length of

evidential statement, maximal length of observation sequences, the value of

infinitum, and the maximal length of prefixes used for representing observed

properties. However, the upper bound is polynomial in the size of the state

space and the number of possible events.

The algorithm has been implemented as a Common Lisp program. The

next chapter further evaluates its capabilities by applying it to the analysis of

example problems of digital forensic analysis.

117

