
Chapter 6

Formalisation of event

reconstruction problem

This chapter uses state machine model of computation to formalise event re-

construction problem in digital investigations. The chapter is organised into

two parts. First, the key concepts are introduced informally on a fictional

example of networked printer analysis in Section 6.1. Second, the introduced

concepts are more rigorously formalised in Section 6.2.

6.1 Informal example of state machine analy-

sis

This section illustrates the possibility of using state machines for event recon-

struction in digital investigations. It considers a fictional example of networked

printer analysis. First, an informal analysis is given, then it is illustrated using

a finite state model of the printer.

6.1.1 Investigation at ACME Manufacturing

The dispute. The local area network at ACME Manufacturing consists of

two personal computers and a networked printer as shown in Figure 6.1. The

75

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

Figure 6.1: ACME Manufacturing LAN topology

cost of running the network is shared by its two users Alice (A) and Bob (B).

Alice, however, claims that she never prints anything and should not be paying

for the printer consumables. Bob disagrees, he says that he saw Alice collecting

printouts. The system administrator, Carl, has been assigned to investigate

this dispute.

The investigation. To get more information about how the printer works,

Carl contacted the manufacturer. According to the manufacturer, the printer

works as follows:

1. When a print job is received from the user it is stored in the first unal-

located directory entry of the print job directory.

2. The printing mechanism scans the print job directory from the beginning

and picks the first active job.

3. After the job is printed, the corresponding directory entry is marked as

“deleted”, but the name of the job owner is preserved.

The manufacturer also noted that

4. The printer can accept only one print job from each user at a time.

5. Initially, all directory entries are empty.

After that, Carl examined the print job directory. It contained traces of two

Bob’s print jobs, and the rest of the directory was empty:

76

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

job from B (deleted)
job from B (deleted)

empty
empty
empty

. . .

The analysis. Carl reasons as follows. If Alice never printed anything, only

one directory entry must have been used, because printer accepts only one

print job from each user. However, two directory entries have been used and

there are no other users except Alice and Bob. Therefore, it must be the case

that both Alice and Bob submitted their print jobs at the same time. The

trace of the Alice’s print job was overwritten by Bob’s subsequent print jobs.

In the next subsection, it is shown how the same conclusion can be derived

from the finite state model of the print job directory.

6.1.2 Informal analysis illustrated with a state machine

Please look at Figure 6.2. It shows a finite state model of the print job direc-

tory. Ellipses correspond to possible states of the directory. Arrows correspond

to addition (or deletion) of print jobs. Each ellipse in Figure 6.2 shows the

content of the print job directory in the corresponding state. For the sake

of simplicity, only the first two directory entries are modeled. For example,

the ellipse (A,B) represents the state in which directory contains an active job

from Alice, and an active job from Bob:

job from A
job from B

empty
empty
empty

. . .

The initial state of the directory corresponds to the ellipse (e,e). The state

77

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

Figure 6.2: Transition graph of the print job directory model

78

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

discovered by Carl corresponds to the ellipse (��B,��B). Any possible scenario of

the incident corresponds to a path from (e,e) to (��B,��B). All such scenarios

can be found by backtracing transitions leading into (��B,��B), or equivalently, by

forward-tracing transitions from (e,e).

The Alice’s claim that she never printed anything corresponds to a path

from (e,e) to (��B,��B) that does not have states with “A” in them. By forward-

tracing transition from (e,e), one can ensure that any path from (e,e) to (��B,��B)

has to go through the (A,B) state, which means that Alice is lying.

6.1.3 Evidential statements

As illustrated by the foregoing example, finite state machines can be used as a

basis for automatic event reconstruction. However, finite state machines alone

are insufficient to completely automate the event reconstruction process. It is

also necessary to formalise the available evidence, such as Carl’s observation of

the final state of the print job directory. So in addition to using state machines

to model system functionality, this dissertation defines the evidential statement

notation for describing the evidence about an incident.

The idea of evidential statements is to formalise pieces of evidence as state-

ments about the properties and change of system state in the past.

Consider, for example, Carl’s observation of the print job directory. The

knowledge of the incident that he obtained directly from the examination of

the printer can be described as follows:

1. the state of the print job directory at the moment of examination was

(��B,��B)

2. before the print job directory reached that state, it visited zero or more

states about which nothing is evident from the examination (it could

have been any states).

Similarly, the manufacturer’s knowledge of the initial state of the print job

directory can be described as follows:

79

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

Figure 6.3: Evidence in ACME investigation

1. the initial state of the print job directory was (e, e),

2. after that, the print job directory could have visited zero or more states,

but the manufacturer knows nothing about those states.

Both descriptions are illustrated graphically in Figure 6.3. Observe that, es-

sentially, both pieces of evidence restrict possible sequences of transitions that

could have occurred during the incident. As a result, event reconstruction can

be viewed as the process of finding all sequences of transitions that satisfy

these restrictions.

Motivation for the development of new formal notation

Checking that computations of a given state machine satisfy given set of re-

strictions is the basic problem of model checking. Since both digital forensics

and model checking are concerned with the analysis of discrete digital systems,

it may seem feasible to use existing formal verification methods in digital in-

vestigations. Additional argument for using these methods is that the goals

of some investigations can be formulated as verification problems (in ACME

investigation, for example, the goal is to verify that Alice never printed any-

thing). There are however, considerable problems with the use of existing

formal verification methods in forensic context:

80

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

1. Insufficiency of explanations. The output of formal verification is basi-

cally a “true” or “false” answer with respect to the given logical formula.

Although model checking tools do provide a counterexample if the for-

mula is false, little other information is given.

At the same time, forensic analysis of evidence is expected to produce

more than a simple “yes” or “no” answer. When preparing for the court

hearing, for example, attorneys may want to know about alternative

explanations of the available evidence. At the trial, the expert may be

challenged to give a comprehensive explanation of how the particular

piece of evidence fits with the facts in issue.

As a result, formal methods in digital forensics should provide more infor-

mative explanation of how possible scenarios are linked to the evidence.

2. The absence of the notion of evidence from formal verification. The

concept of evidence is fundamental in the legal context. Apart from

restricting possible sequences of transitions, a piece of evidence can have

its own properties related to its discovery. For example, an eyewitness

observation may have real-world time associated with it, which may be

used to perform event time bounding analysis described in Section 3.2.3.

The existing formal verification methods do not provide explicit ways to

represent evidence and to reason about its properties.

As a result of the aforementioned problems, it has been decided to create a new

formal notation rather than use an existing one. The new notation provides

explicit representation for evidence, and defines the basic analytical problem

as finding the set of all possible explanations of the given evidence.

6.1.4 Assumption about reliability of evidence

The importance of evidence reliability has been highlighted in the previous

section and in Chapter 2. However, due to limited timeframe of this research

81

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

work, it has been decided not to address the issue of evidence reliability in

this research. Throughout the rest of this dissertation, it is implicitly as-

sumed that all evidence is absolutely reliable. This assumption simplifies the

problem of event reconstruction by avoiding reasoning with uncertainty. This

simplification is justified, because the evidence may be incorporated into anal-

ysis gradually. First the investigator can perform formal analysis with only

the most reliable evidence. If results are unsatisfactory, the analysis can be

repeated with less reliable evidence included.

6.2 Formalisation of event reconstruction problem

This section formally defines the event reconstruction problem. The definition

is based on the idea that the knowledge used by forensic expert to reconstruct

past events in a digital system can be divided into two categories:

• Knowledge of the system functionality — the expert knowledge

• Evidence — description of the system’s final state and clues to the sys-

tem’s behaviour in the past, such as witness statements, printouts, etc.

The proposed definition represents the knowledge of the system functionality as

a finite state machine and uses evidential statement notation for describing the

evidence and investigative assumptions. The event reconstruction is defined as

finding all possible explanations for the given evidential statement with respect

to the given finite state machine. Appendix C.1 contains formalisation of the

evidential statement notations and related notions in ACL2 logic.

6.2.1 Finite state machine

Finite state machine is a tuple of four elements T = (Q, I, φ), where

• I is a finite set of all possible events,

• Q is a finite set of all possible states,

82

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

• φ : I ×Q→ Q is a transition function that determines the next state for

every possible combination of event and state.

Transition is the process of state change. Transitions are instantaneous.

A (finite) computation is a non-empty, finite sequence of steps, where each

step is a pair cj = (cιj, c
q
j), where cιj ∈ I is event, cqj ∈ Q is a state, and any

two steps ck and ck−1 are related via transition function:

for all k, such that 1 ≤ k < |c|, cqk = φ(cιk−1, c
q
k−1)

The set of all finite computations of the finite state machine T is denoted

CT .

Observe that, since there is no upper bound on the possible length of a

computation, CT is infinite.

6.2.2 Run

To formalise transition backtracing, the concept of run is defined. A run is a

possibly empty sequence of finite computations, in which the next computation

is obtained from the previous computation by discarding its first element.

Please look at Figure 6.4, which graphically illustrates this concept.

A run is a sequence of computations r ∈ (CT)|r|, such that if r is non-empty,

its first element is a computation r0 ∈ CT , and for all integer 1 ≤ i < |r|, ri =

ψ(ri−1), where function ψ discards the first element of the given computation.

For two computations x ∈ CT and y ∈ CT , y = ψ(x) if and only if x = x0 ·y.

The set of all runs of the finite state machine T is denoted RT .

The run of computation c is a run whose first computation is c.

Observe that any run r is completely determined by its length and its first

computation.

83

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

Figure 6.4: Run of computation

6.2.3 Partitioned run

Partitioned run is a finite sequence of runs pr ∈ (RT)|pr |, such that concate-

nation of its elements in the order of listing is also a run:

(pr 0 · pr 1 · pr 2 · . . . · pr |pr |−1) ∈ RT

The set of all partitioned runs of the finite state machine T is denoted PRT .

A partitioning of run r is a partitioned run denoted pr r, such that concate-

nation of its elements produces r:

(pr r 0 · pr r 1 · pr r 2 · . . . · pr r |pr |−1) = r

6.2.4 Formalisation of backtracing

The inverse of ψ is function ψ−1 : CT → 2CT . For any computation y ∈ CT , it

identifies a subset of computations whose tails are y:

for all x ∈ ψ−1 , y = ψ(x)

In other words, ψ−1 backtraces the given computation.

84

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

Although function ψ−1 can be used to formalise backtracing, it is inconve-

nient, because it takes a single computation and produces a set of computa-

tions. As a result, it cannot be applied to its own output. A more convenient

alternative is function Ψ−1 : 2CT → 2CT , which is applied to a set of computa-

tions:

for Y ⊆ CT , Ψ−1(Y) =
⋃

y ∈Y

ψ−1(y)

The meaning of functions ψ, ψ−1, and Ψ−1 is illustrated in Figure 6.5.

Backtracing of computations is defined as a finite number of compositions

Ψ−1 applied to a subset of computations:

Ψ−1(Ψ−1(. . .Ψ−1(Y) . . .))

Additional convenience of function Ψ−1 is that its software implementation

can manipulate implicit symbolic descriptions of computation sets, whereas

implementation of ψ−1 requires explicit representation of computations.

6.2.5 Formalisation of evidence

In a way, every piece of evidence tells its own “story” of the incident. The aim

of event reconstruction can be seen as combining stories told by witnesses and

by various pieces of evidence to make the description of the incident as precise

as possible. This story-oriented view of event reconstruction is the basis of

evidence formalisation presented below.

Observation

Observation is a statement that system behaviour exhibited some property

p continuously for some time. Syntactically, observation is a triple o =

(P, min, opt), where P is the set of all computations of T that possess ob-

served property, min and opt are non-negative integers that restrict duration

of observation. Informally speaking, observation o characterises a set of runs

85

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

Figure 6.5: Functions ψ, ψ−1, and Ψ−1

86

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

Ro, whose lengths are limited by min and opt and whose computations satisfy

P .

Since witness observations are external to the system, transitions that do

not change observed property of the state are invisible to the witness. It means

that, in general, a sequence of states could have been observed rather than a

single state. Elements min and opt restrict the length of runs comprising Ro.

Element min specifies the minimal length of runs in r ∈ Ro, and opt specifies

maximal “excess” of length in addition to min:

min ≤ |r| ≤ (min + opt)

An explanation of observation o is a run r ∈ R, such that every element of

run r possesses observed property: for all 0 ≤ i < |r|, ri ∈ P , and the length

of run r satisfies min and opt : min ≤ |r| ≤ (min + opt).

The meaning of observation o is the set Ro ⊆ RT of all runs that explain

o.

A note on min and opt . The introduction of restrictions on the length

of observations is motivated by the following reason. Although the witness

may not always tell how many transitions have been observed, it is sometimes

possible to set a limit. Consider Carl’s observation of the print job directory.

The length of run is at least one, because the deleted print jobs from Bob were

actually observed. Moreover, the length of runs corresponding to the final

state observation is exactly one, because there were no more transitions from

the final state.

The upper limit on the length of observation is introduced to ensure ter-

mination of reconstruction process. The introduction of the upper limit is

permissible, because digital forensic analysis reconstructs only final computa-

tions. Therefore, introduction of a sufficiently large upper limit can be used

to model infinity. The constant infinitum is introduced for this purpose:

87

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

The infinitum is an integer constant that is greater than the length of any

computation that may have happened during the incident.

Types of observations. Observations can be divided into several types:

• Fixed length observation is observation of the form (P, x, 0). Any run

explaining it has length x.

• Zero-observation is observation of the form (P, 0, 0). The only run ex-

plaining it is the empty sequence ε.

• No-observation is observation (CT , 0, infinitum) that puts no restrictions

on computations that could have happened during the incident.

Observation sequence

An observation sequence is a non-empty sequence of observations listed in

chronological order:

os = (observationA, observationB, observationC , . . .)

Informally, an observation sequence represents uninterrupted eyewitness story.

The next observation in the sequence begins immediately when the previous

observation finishes. Gaps in the story are represented by no-observations.

An explanation of observation sequence os is a partitioned run pr such that

the length of pr is equal to the length of os :

|pr | = |os|

and each element of pr explains the corresponding observation of os :

for all 0 ≤ i < |os|, pr i ∈ Rosi

Note that the same run can explain the same observation sequence in a number

88

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

Figure 6.6: A run that gives two explanations to an observation sequence

of ways, each corresponding to a different partitioning of the run. Figure 6.6

illustrates this possibility of multiple explanations.

The meaning of observation sequence os is the set PRos ⊆ (RT)|os| of all

partitioned runs that explain os .

A run r satisfies an observation sequence os if and only if there exists a

partitioning of r that explains os . There may be more than one partitioning

of r that explains os .

A computation c satisfies an observation sequence os if and only if there

is a run r that satisfies os and r0 = c.

Evidential statement

Evidential statement is a non-empty sequence of observation sequences

es = (osA, osB, osC , . . .)

89

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

Evidential statement combines restrictions imposed by all of its observation se-

quences – a computation satisfying one observation sequence must also satisfy

all other observation sequences in the evidential statement.

An explanation of evidential statement es is a sequence of partitioned runs

spr , such that all elements of spr are partitionings of the same run:

spr 00 · spr 01 · . . . · spr 0|spr0|−1 =

= spr 10 · spr 11 · . . . · spr 1|spr1|−1 =
...

= spr |es|−10
· spr |es|−11

· . . . · spr |es|−1|spr |es|−1|−1
= r

and the length of spr is equal to the length of es :

|spr | = |es|

and each element of spr explains corresponding observation sequence of es :

for all 0 ≤ i < |es|, spr i ∈ PResi

The meaning of evidential statement es is the set of all sequences of partitioned

runs SPRes ⊆ (PRes0
× PRes1

× . . . × PRes|es|−1
) that explain es .

Evidential statement is inconsistent if it has empty set of explanations:

SPRes = ∅.

Figure 6.7 illustrates the relationship between the evidential statement and

other formal notions introduced in this section.

Definition of event reconstruction problem

In terms of the above defined formalisation of evidence, event reconstruction

problem is defined as calculating the meaning SPRes of the given evidential

statement es with respect to the given finite state machine T .

90

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

Figure 6.7: Evidential statement and related notions

91

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

A note on the use of infinitum The infinitum constant is designed as a

“no-limit” constant for the opt parameter of observations. It is possible, there-

fore, that several observations in an observation sequence will have infinitum

as their opt parameter. Such observation sequence may have explanations

whose lengths are several times longer than infinitum, because each “no-limit”

observation may have explaining run, whose length is infinitum.

By definition given in Section 6.2.5, infinitum is greater than any compu-

tation than might have happened during the incident. As a result, there is no

practical reason to calculate the entire SPRes . If infinitum is used and is cho-

sen correctly, it should suffice to calculate only a part of SPRes that includes

all explanations of es , whose total length is less then infinitum.

6.3 Summary

This chapter has demonstrated that event reconstruction in digital investi-

gations can be formalised using state machine model of computation. The

following approach to event reconstruction has been proposed.

1. Create a finite state model of the system under investigation and for-

malise the evidence in terms of that model.

2. Use transition backtracing or any other suitable method to find all se-

quences of transitions that agree with the formalised evidence.

This chapter was primarily concerned with the step one of this approach.

To allow formalisation of evidence, it defined evidential statement notation.

The problem of event reconstruction has been defined as finding all possible

explanations of the given evidential statement with respect to the given finite

state machine.

The next chapter addresses the second step of the proposed approach to

event reconstruction. It presents an algorithm that computes the meaning of

92

CHAPTER 6. FORMALISATION OF EVENT RECONSTRUCTION PROBLEM

the given evidential statement. It also analyses the complexity of the algo-

rithm and describes a “proof-of-concept” implementation of the algorithm in

Common Lisp.

93

