
Chapter 5

Theoretical background

This chapter provides necessary background in computer science for the devel-

opment and analysis of event reconstruction model in the rest of the disserta-

tion. The chapter is divided into two sections.

Section 5.1 describes the formal notation used in the dissertation. It is a

combination of usual mathematical notation with expressions of ACL2 logic.

Mathematical notation is described in Section 5.1.1. ACL2 notation is de-

scribed in Section 5.1.2.

Sections 5.2 introduces the state machine model of computation, which

serves as theoretical basis for formalisation of event reconstruction presented

in subsequent chapters.

5.1 Formal notation

5.1.1 Mathematical notation

Sets. Sets are denoted by capital Roman letters, e.g. A,B,C. Sets are

defined in two ways:

1. by listing their members between { and }, e.g. A = {1, 2};

49

CHAPTER 5. THEORETICAL BACKGROUND

2. by a set former A = {a|p(a)}, which specifies the set of all objects a such

that p(a) is true. Sometimes p(a) is given verbal definition.

Empty set. Empty set is denoted ∅.

Powerset. Powerset of a set A is denoted 2A.

Cardinality. Cardinality of a set A is denoted |A|.

Membership. Statement that a is a member of set A is denoted a ∈ A.

Statement that a is not a member of set A is denoted a /∈ A.

Subset. Statement that set A is a subset of set B is denoted A ⊆ B.

Union, intersection, and set difference. Union, intersection, and set

difference of two sets A and B are denoted A∪B, A∩B, and A\B respectively.

Integers. Set of integers is denoted Z.

Rationals. Set of rational numbers is denoted R.

List (Sequence). A list (sequence) is defined by listing its elements in round

brackets, e.g. (0, 1, 1, 0, 0).

Length. Length of a list a is denoted |a|.

Numbering of elements in a list. Elements in a list are numbered from

0. The i-th element of a list a is denoted ai. If a = (1, 2, 3) then a0 = 1, a1 =

2, a2 = 3

Concatenation. Concatenation of two lists a and b is denoted a · b. For

example (1, 2, 3) · (4, 5) = (1, 2, 3, 4, 5)

50

CHAPTER 5. THEORETICAL BACKGROUND

Sum of elements of a list. The sum of all elements of a list a is denoted

Σa. The sum of elements ai such that m ≤ i ≤ n is denoted
∑n

i=m ai. More

precisely,

n
∑

i=m

ai =



















am + . . . + an , if m < n

am , if m = n

0 , if m > n

Empty list. Empty list is a list with no elements. Let a denote a list, and

let ε denote an empty list, then

|ε| = 0

ε · a = a · ε = a

Language. A language is a set of all finite lists composed of elements of

some set. Language is denoted A∗, where A is a set, from elements of which

lists are composed. Language includes empty list ε. If A = {0, 1}, then

A∗ = {ε, (0), (1), (0, 0), (0, 1), (1, 0), (1, 1), . . .}

Any language over a non-empty set of elements is infinite.

Tuple. Lists represent tuples. A tuple is defined by listing its elements in

brackets, e.g. (1, 2)

Set product. Set product is denoted A×B. It is a set of all possible pairings

between elements of A and elements of B:

A×B = {(a, b)| a ∈ A, b ∈ B}

Functions. Usual mathematical syntax is used for functions. For example,

term f(x, y) denotes application of function f to arguments x and y.

51

CHAPTER 5. THEORETICAL BACKGROUND

O–notation. O–notation provides a way to give an asymptotic upper bound

on a function. For a given function of m non-negative integer arguments

g(x0, . . . , xm), expression O(g(x0, . . . , xm)) denotes the set of functions

O(g(x0, . . . , xm)) = {f(x0, . . . , xm) | there exist positive constants

c, n0, . . . , nm such that

0 ≤ f(x0, . . . , xm) ≤ cg(x0, . . . , xm) for all x0, . . . , xm

such that x0 ≥ n0, and x1 ≥ n1, and . . . xm ≥ nm}

When it is said that function f(x0, . . . , xm) is O(g(x0, . . . , xm)) it means that

it is a member of O(g(x0, . . . , xm)). When O(g(x0, . . . , xm)) is used in mathe-

matical expressions it stands for some unnamed member of O(g(x0, . . . , xm)).

ACL2 functions. ACL2 functions, including functions defined in Appendix

A, are permitted in mathematical formulae. Both the usual mathematical syn-

tax and the prefix notation of Lisp are allowed. For example, car(l) = (car l).

5.1.2 ACL2 notation

ACL2 (A Computational Logic for Applicative Common Lisp) is a first-order

logic of total functions. It uses side-effect free subset of Common Lisp as

a syntax for the logic. For a precise definition of syntax and semantics of

ACL2 logic see [49]. A tutorial introduction to ACL2 can be found in [48]. A

collection of ACL2 case studies is given in [47].

Atomic data types. ACL2 logic provides atomic data objects of several

types. Numbers include the integers, rationals, and complex rational numbers.

Strings are sequences of characters such as "abc". Symbols can be thought as

atomic words, such as lisp or append.

Ordered pairs. ACL2 provides ordered pairs or conses. An element of a

cons is either a cons or an atom. Binary trees and lists are represented as

52

CHAPTER 5. THEORETICAL BACKGROUND

conses.

Lists. A list is either an atomic object or a cons whose second element is a

list. Atomic objects are called empty lists.

True lists. Lists terminated with special symbol nil are called true lists.

Constants. In ACL2 statements, Common Lisp syntax is used for constants.

For example

• 0 10 -1 -5 are integer constants

• "hello world!" is a string constant. String constants are delimited

with " sign

• ’lisp ’append are symbol constants

• ’(a . b) and ’((lisp . 1) . (append . 2)) are examples of or-

dered pair constants

• ’(0 1 0) is an example of a true list constant. It is a shorthand for the

ordered pair constant ’(0 . (1 . (0 . nil)))

Booleans. Falsity in boolean expressions is denoted by symbol nil. Any

non-nil value in boolean expressions means truth. Symbol t is returned as

truth constant by most ACL2 functions.

Expressions. Common Lisp expressions are used to construct ACL2 state-

ments. An ACL2 expression is either

• a constant,

• a variable symbol (whose value must be determined by the context),

• a function application of the form (fn a1 a2 ... an), where fn is the

function name and a1, a2, . . . an are function arguments,

53

CHAPTER 5. THEORETICAL BACKGROUND

• an event (event-name a1 a2 ... an) that modifies logical world of

ACL2, or

• a backquote expression

Named constants. Named constants are shorthands for ordinary constants.

They are defined using defconst event: (defconst *name* constant), where

name is the name for the constant constant.

Backquote expression. Backquote expression is a list constant prepended

with ‘ instead of ’. Atoms in backquote expressions may be prepended with

comma, in which case they are treated as names of constants1. The value of

a backquote expression is the result of substituting the values of the comma-

prepended constants into the list constant. Consider the following example.

(defconst *LIST-A* ’(a b c))

(defconst *LIST-B* ‘(1 2 ,*LIST-A* 3))

The value of *LIST-B* is constant ’(1 2 (a b c) 3).

ACL2 functions. ACL2 provides a number of built-in functions. Most of

them are standard Common Lisp functions. Built-in ACL2 functions used in

the following chapters are defined in Appendix A.

Macros. Macros are used in ACL2 as shorthands for long expressions. Stan-

dard macros used in the following chapters are described in Appendix A.

New function definition. New functions are introduced into ACL2 log-

ical universe using defun event. The general form of function definition is

(defun name args dcl body), where name is the name for the new function,

1 There are other interpretations of comma-prepended atoms, which are not used
in this dissertation. See [49] for details

54

CHAPTER 5. THEORETICAL BACKGROUND

args is a list of formal parameters, dcl is an optional list of declarations,

and body is an ACL2 expression. A function definition extends ACL2 logical

universe with an axiom of the form

name(args) = body

The following statement defines function concatenating two lists.

(defun app (a b)

(if (consp a)

(cons (car a) (app (cdr a) b))

b))

Before recursive definition is admitted into the logic, the recursion must be

proved to terminate. This is achieved by proving that some measure of func-

tion arguments decreases according to some well-founded relation with each

recursive iteration.

Theorems. Theorems are introduced using defthm event. General form of

theorem definition is (defthm name body inst). Where name is the name for

the new theorem, and body is an ACL2 expression in one of permitted forms

(see [48] for details). inst denotes optional instructions to the theorem prover.

The meaning of theorem is that for an arbitrary substitution of terms

for the variables in body, the result of evaluating body is t. For example,

(defthm 2x2 (equal (* 2 2) 4)) is a theorem in ACL2. The following the-

orem states associativity of concatenation.

(defthm assoc-of-app

(equal (app (app a b) c)

(app a (app b c))))

55

CHAPTER 5. THEORETICAL BACKGROUND

Recursion as limited form of quantification. Although ACL2 logic pro-

vides support for explicit quantification, ACL2 theorem prover offers little

automation for reasoning with quantifiers. As a result, ACL2 theorems are

usually formulated in terms of recursive test functions instead of quantified

expressions.

For example, to state in ACL2 that all elements of list l are non-negative

integers one usually defines a recursive function

(defun natural-listp (l)

(if (consp l)

(and (integerp (car l))

(< 0 (car l))

(natural-listp (cdr l)))

t))

which returns true only if its argument is a list of non-negative integers. Once

function natural-listp is defined, expression (natural-listp l) can be

used in theorems to state desired property.

Proofs. ACL2 proofs are constructed using ACL2 proof rules. See [49] for a

comprehensive description of ACL2 proof rules.

Propositional axiom. For every formula φ, derive (¬φ ∨ φ).

Propositional proof rules:

• Expansion: derive (φ1 ∨ φ2) from φ2.

• Contraction: derive φ from (φ ∨ φ).

• Associativity: derive ((φ1 ∨ φ2) ∨ φ3) from (φ1 ∨ (φ2 ∨ φ3)).

• Cut: derive (φ2 ∨ φ3) from (φ1 ∨ φ2) and (¬φ1 ∨ φ3).

Other propositional rules of inference such as modus popens can be derived

from the above rules and the propositional axiom.

56

CHAPTER 5. THEORETICAL BACKGROUND

bottom
elements

Figure 5.1: Well founded order

Substitution of equals for equals. Derive

f(x1, . . . , xn) = f(y1, . . . , yn)

from

(x1 = y1) ∧ . . . ∧ (xn = yn)

Instantiation. From theorem φ and substitution σ of terms for variables in

φ derive the result of substitution.

Opening of function calls. To “open” a function call f(x, y, z) means

to replace term f(x, y, z) by the right hand side of the function definition

f(a, b, c) = body(a, b, c) with x, y, and z substituted for a, b, and c respec-

tively.

Induction. ACL2 induction principle is a variation of structural induction

described in [21].

Suppose there is a set A = {a} and a well founded relation � defined on

the elements of A. Relation � is well founded, if any non-empty subset of

A contains at least one “bottom” element â, such that no other element of

the subset is �-smaller than â. The relation � may be partial. The well-

foundedness of � arranges elements of A in a directed acyclic graph (see Fig.

5.1).

57

CHAPTER 5. THEORETICAL BACKGROUND

To prove that some property p holds for all elements of A it is sufficient to

prove that

1. Base case: the property p holds for all bottom elements of A;

2. Induction step: the property p holds for arbitrary a ∈ A, assuming that

p holds for all elements that are �-smaller than a.

Instead of assuming that p holds for all �-smaller elements, one can assume

that p holds for some of the �-smaller elements. One can also split single base

case and single induction step into several base cases and several induction

steps, all of which must be proved.

This induction principle can be applied directly to ACL2 function defini-

tions. Every definition of ACL2 function is associated with a measure of the

function arguments and a well-founded relation. To show that every function

definition terminates, ACL2 proves that the measure decreases according to

the relation in every recursive call. The measure together with the relation

impose well-founded ordering on the values of function arguments. The values

for which recursion terminates are bottom elements.

Given a formula and a function definition, one can use the following tech-

nique to generate base cases and induction steps. First, identify all execution

paths through the body of the function. Second, write a base case for every

execution path with no recursive calls. Third, write an induction step for ev-

ery path that contains one or more recursive calls. Each induction step has

as many induction hypotheses as there are recursive calls in the corresponding

execution path. Each induction hypothesis asserts correctness of the target

formula for parameters of the corresponding recursive call.

To prove (booleanp (natural-listp l)) by structural induction, one

would analyse definition of natural-listp given on page 56 and produce one

base case and one induction step:

58

CHAPTER 5. THEORETICAL BACKGROUND

Base case:

(implies (atom l)

(booleanp (natural-listp l)))

Induction step:

(implies (and (not (atom l))

(booleanp (natural-listp (cdr l))))

(booleanp (natural-listp l)))

Both statements are trivially proved by opening calls of natural-listp and

simplification.

5.2 State machine model of computation

This section describes the state machine model of computation and its ap-

plication to analysis of computing systems. Section 5.2.1 defines basic state

machine and reviews some of its extensions. Section 5.2.2 discusses approaches

to the development of state machine models of computing systems. Section

5.2.3 discusses methods for automated analysis of finite state machine models

of computing systems.

5.2.1 Basic state machine model and its variations

The notion of state machine was introduced by Alan Turing in his work on

computable numbers [77]. It served as a model of human performing a com-

putation.

Basic state machine can be defined as a triple T = (I, Q, δ), where

• I is the set of input symbols;

• Q is the set of states, which the machine can assume;

59

CHAPTER 5. THEORETICAL BACKGROUND

Figure 5.2: Counting state machine

• δ : Q× I → Q is the transition function.

State machine is called finite if all of its elements are finite.

Operation of state machine. State machine consumes a sequence of input

symbols. For each symbol, the machine changes its state. The new state is

determined by the transition function from the current state of the machine

and the input symbol being consumed. The process of state change is known

as transition, and the sequence of transitions is called a computation.

Transition graph. A common way to depict finite state machine is to draw

its transition graph also known as transition diagram. The nodes in the graph

represent states, the arrows represent transitions. The labels on the arrows

represent input symbols that cause transitions. Figure 5.2 shows a finite state

machine that counts from 0 to 3. It has four states: 0, 1, 2, and 3, and

a single input symbol +1, which forces the machine to advance to the next

state. Suppose that 0 is the initial state of the machine, then after processing

the sequence (+1,+1,+1) the machine will be in state 3.

State machine resembles sequential circuit. The operation of state ma-

chine closely resembles the operation of sequential circuit, which is the basic

building block of modern computers. A sequential circuit consists of a combi-

natorial circuit and a vector of memory elements. Memory elements store the

60

CHAPTER 5. THEORETICAL BACKGROUND

Figure 5.3: A 2-bit binary counter

current state of the circuit, while the combinatorial circuit implements its tran-

sition function. Only two distinct voltage levels are allowed in the sequential

circuit — high and low.

Figure 5.3 shows an example sequential circuit that implements a 2-bit

binary counter. It works as follows.

• The combinatorial circuit inverts the output of memory element d0 and

feeds it back to the input D of d0. That is, if the output of d0 is high,

its input D will be low, and vice versa.

• The combinatorial circuit produces high voltage at the input D of d1 if

the outputs of d1 and d0 are different, and low voltage if the outputs of

d1 and d0 are the same.

• When the voltage at the input CLK of memory elements raises from low

to high, the voltage at their D inputs is latched in the memory elements

and appears at their outputs.

If the low voltage level at the circuit output is associated with digit ’0’, and

the high voltage level is associated with digit ’1’, and if the outputs of d0 and

61

CHAPTER 5. THEORETICAL BACKGROUND

d1 are associated with digits in a binary number (d0 being the least significant

digit, and d1 being the most significant digit), then each clock pulse adds 1 to

the number represented by the memory elements.

As long as the details of state transition process are not important to the

analysis of sequential circuit, finite state machine shown in Figure 5.2 provides

a good abstraction of the 2-bit binary counter. Finite state machines are

commonly used for specification and minimisation of sequential circuits (see

for example Chapter 10 of [41]).

Modeling concurrent systems as state machines

State machines provide a natural way to model systems whose components

change their states synchronously like sequential circuits. Nevertheless, state

machines can also be used to model concurrent systems, whose components

change their states asynchronously (at different moments in time). State ma-

chine models of such systems are based on the interleaving model of concur-

rency, which can be summarized as follows:

• states of all components of a concurrent system form a global system

state;

• the result of concurrent updates to the global state can always be simu-

lated by an equivalent sequence of atomic updates to the global state.

The entire system is modeled as a single state machine, whose state is a vec-

tor of states of individual components, and whose transitions perform atomic

updates of the global state. Figure 5.4 gives an example of such a model.

The interleaving model of concurrency has been successfully used in prac-

tice, particularly in the domain of hardware and software verification. See [28]

for examples.

62

CHAPTER 5. THEORETICAL BACKGROUND

Figure 5.4: Interleaving model of concurrent system

Variations of state machine

Many extensions and modifications of the basic state machine are known.

Given below are some examples that appeared in the literature. Due to the

abundance of such extensions, the list given below is characterising rather than

comprehensive.

• Transducers. Transducer is a state machine, which has output. For each

input symbol is produces an output symbol. The concept of transducer

emerged in [44] as a way to formalise synthesis of sequential digital cir-

cuits. The two best known types of transducers are Mealy machines [62]

and Moore machines [64]. Mealy machine is a tuple with six elements:

Me = (I, Q, δ, q0, O, σ)

where I,Q, and δ are defined as above, and

– q0 is the initial state of the machine;

– O is the set of output symbols;

– σ : I ×Q→ O is the output function.

63

CHAPTER 5. THEORETICAL BACKGROUND

Initially, Me resides in state q0. Simultaneously with each transition, Me

produces an output symbol which is determined by σ from the current

state of the machine and the current input symbol. Moore machine is

also a tuple of six elements:

Mo = (I, Q, δ, q0, O, κ)

where I, Q, δ, q0, and O are defined as above and κ : Q → O is the

output function. Like Mealy machine, Mo generates one output symbol

after each transition. However, the output symbol of Mo does not depend

on the current input symbol.

• Acceptors. Acceptor is a state machine, some of whose states are desig-

nated as “accepting” states. Such a state machine accepts a sequence of

input symbols if, after processing the sequence, it stops in an accepting

state. Similarly, it rejects an input sequence if it stops in a non-accepting

state. Formally acceptor is a tuple with five elements

Ac = (I, Q, δ, q0, Qa)

where I,Q, δ, and q0 are defined as above, and Qa is the set of accepting

states.

The notion of acceptor (or accepting automaton) was introduced in [51]

to formalise McCulloch-Pitts model of neural net. Finite accepting au-

tomata turned out to be compact representations for many useful sets of

objects [16]. An object is in the set, if symbolic encoding of the object

is accepted by an accepting automaton representing the set.

• Non-deterministic automata. Non-deterministic automaton is an en-

hancement of the acceptor automaton concept. Non-deterministic au-

tomaton is obtained from the basic (deterministic) acceptor by replacing

64

CHAPTER 5. THEORETICAL BACKGROUND

transition function δ with a transition relation

∼

δ ⊆ ((I ×Q)×Q)

Rather than specifying a single next state for a combination of current

state and input symbol, transition relation specifies several possible next

states. As a result, a single input sequence corresponds to several possible

computations. Non-deterministic automaton accepts an input sequence

if there is at least one possible computation corresponding to the input

sequence that ends in an accepting state.

Non-deterministic automata were introduced by Rabin and Scott in [70]

as a way to simplify formal descriptions of acceptors. They also showed

that a non-deterministic automaton can always be simulated by a de-

terministic automaton, which accepts exactly the same set of input se-

quences as the non-deterministic automaton.

• State machines with external memory. This type of state machine model

consists of a state machine that controls one or more external storage

devices. The best known example of such model is the family of Turing

machines described in [77].

A basic Turing machine consists of a finite state machine which controls a

single read/write head. The head can move along an infinite tape, which

is divided into sections and each section can store one symbol from a

finite alphabet. The head can read the symbol from the section directly

under it, write new symbol into the section, and move to the left or to

the right by one section (see Figure 5.5).

Turing machine functions as follows. First the symbol is read from the

tape and input into the state machine. The state machine transits into

a new state and emits a command for the head, which specifies (a) the

new symbol to be written on the tape, and (b) in what direction the

65

CHAPTER 5. THEORETICAL BACKGROUND

Figure 5.5: Turing machine

head should move after writing the symbol.

The state machine that controls the head can be formally defined as a

tuple

TM = (A, Q, δ, q0, θ, {left, right})

where

– A is the set of symbols that can be written on the tape

– Q is the set of states of the state machine

– q0 is the initial state

– δ : A×Q→ Q is the transition function

– θ : A × Q → A × {left, right} is the output function, such that

for every combination of tape symbol and state it determines the

new tape symbol to be written, and the direction of the head’s

movement.

Turing machines were introduced to formalise the notion of computation

and served as a major instrument in building theories of computability

and complexity.

In summary, the basic state machine model can be extended in many ways to

suit modeling needs of a specific domain. Both finite and infinite state machine

66

CHAPTER 5. THEORETICAL BACKGROUND

models have been defined.

Finite state machines are appropriate for digital investigations

From philosophical standpoint the infinite models — such as Turing machines

or machines with infinite state space — are not required for reasoning about

the real computing systems. The real computing systems are finite. They are

built using finite number of sequential circuits, which in the normal course

of operation have finite number of states; they communicate over channels

with finite throughput; and they operate at a finite clock frequency for a finite

amount of time. Digital investigations are concerned only with real computing

systems. Thus, for the purposes of digital investigations it should suffice to

model computing systems as finite state machines.

For this reason, the following chapters assume that the system under in-

vestigation can be formalised as a finite state machine, and that only finite

computations need to be considered for event reconstruction.

5.2.2 Creation of system models

Creation of a suitable formal model of a system is important first step in any

formal analysis. This section reviews potential problems with formal models,

and suggests possible approaches to the development of models for digital

investigations.

Potential problems with formal models All formal models, including

state machine models, suffer from two kinds of problems: problems caused

by the closed world assumption, and errors in specification of possible system

behaviour.

Closed world assumption. If some state or event is not represented in

the formal model of a system, the subsequent formal analysis will have no basis

for reasoning about such a state or event. The analysis will have to assume

67

CHAPTER 5. THEORETICAL BACKGROUND

that such a state or event does not exist. This assumption is known as the

closed world assumption. Observe, that if some important event is omitted, the

analysis is not comprehensive, and the conclusions obtained by such analysis

are not necessarily sound.

Errors in specification of system behaviour. This refers to misrep-

resentation of system behaviour within the chosen formal framework. In the

state machine setting it amounts to allowing impossible computation or dis-

allowing possible computations. Note, however, that the problem arises only

with those computations, whose presence or absence may affect the outcome of

the analysis. Obviously, if it can be proved that presence or absence of some

computation does not affect the outcome of the analysis, that computation

may be safely excluded from the model.

Verification of formal models. Two distinct methods exist for checking

that the model is free from above described errors. First, model correctness

can be tested experimentally, by comparing model predictions with the ex-

perimental results. Second, model correctness can be proved by showing its

equivalence to another model of the same system, where the latter model is

believed to be correct.

Approaches to the development of system models

Identified below are two possible approaches to the development of formal

models for digital investigations: completely manual and transformational,

which obtains the model by transforming another model.

Manual model construction. In this approach all modeling is per-

formed by a human expert who specifies the model using some formal language.

This approach is laborious, but the resulting model should be admissible in

court, because by building it the expert expresses his expert opinion about how

68

CHAPTER 5. THEORETICAL BACKGROUND

the system works. Testing is an obvious way to improve confidence in such a

model. Proving equivalence of the model to another model of the system is

another possibility.

Model construction by transforming another model. A different

way to obtain a model of a system is to transform another model of the same

system using a well defined set of transformation rules. The rules must be such

that they preserve properties of analytical interest. This approach is particu-

larly appealing, because most of computer systems are already defined using

some formal language — either programming language like C and Java, or

hardware definition language like VHDL and Verilog. Automatic construction

of finite state machine models directly from source code is an area of active

research. Prototype systems for automatic construction of finite state models

have been reported in [32].

Other approaches to model construction Since the main aim of this re-

search is to formalise event reconstruction, further investigation of approaches

to creating finite state machine models of systems for forensic purposes is left

for future work. The reader is referred to [66] for further discussion of practical

aspects of specifying state machine models of systems.

5.2.3 Analysis of finite computations

Many analyses of finite state machines can be reduced to a search for compu-

tations that satisfy certain property. If the length of possible computations is

limited, all such computations can be found by a depth-limited search in the

state space of the machine.

Let A be a finite state machine A = (I, Q, δ), and let k be an upper

bound on the number of transitions in possible computations of A. A naive

algorithm for analysis of computations of A is given in Figure 5.6. First, it

computes the set CAk
of all computations of A bounded by k, then it checks

69

CHAPTER 5. THEORETICAL BACKGROUND

1: Ccurrent ← Q
2: CAk

← Ccurrent

3: for j ← 1 to k step 1 do
4: Cnext ← ∅
5: for every computation c ∈ Ccurrent do
6: q ← the last state in c
7: for every input symbol ι ∈ I do
8: p← δ(q, ι)
9: Make new computation c′ by suffixing c with a transition q

ι
→ p

10: Cnext ← Cnext ∪ {c
′}

11: end for
12: end for
13: CAk

← CAk
∪ Cnext

14: Ccurrent ← Cnext

15: end for
16: for every computation c ∈ CAk

do
17: Check c against analysis criteria
18: end for

Figure 5.6: A naive algorithm for finite computation analysis

every computation in CAk
against the analysis criteria.

If operations in lines 1–16 and 18 take constant time, and the time of check-

ing in line 17 is g(k), then it can be shown that for a given A the worst running

time of the algorithm is O((g(k) + γ)|Q||I|k+1), where γ is an implementation

dependent constant.

Despite exponential complexity of the naive algorithm, algorithms with

lower complexity have been constructed for many kinds of finite state machine

analyses. Most of this work was done in the domain of automatic verification

of reactive systems also known as model checking [28]. Three key methods

were used for reducing complexity. Each of them is discussed in the following

paragraphs.

Avoiding explicit construction of computations Many properties of

computations can be inferred from the transition graph without constructing

possible computations. For example, to verify that every state in every possible

70

CHAPTER 5. THEORETICAL BACKGROUND

computation of A satisfies some property, it suffices to check that all states in

Q satisfy that property. This provides an algorithm with running time O(|Q|)

rather than O((g(k) + γ)|Q||I|k+1)

This idea was actively developed by the model checking community. One

commonly used formalism for expressing correctness criteria is propositional

temporal logic CTL*, which was defined in [33]. By avoiding explicit construc-

tion of computations, it was possible to construct an algorithm that checks

given finite state machine against given CTL* formula f in time O((|Q| +

R)O(|f |)), where |Q| is the number of possible states, |f | is the length of the

formula, and R is the number of arcs in the transition graph of the state

machine (see pages 46–69 of [28] for details).

Symbolic representation of state sets Another approach to reducing

complexity of analysis algorithms is to represent sets of computations implic-

itly, for example as formulae in some decidable logic. When such a formula is

evaluated against a state it is either true or false. Thus, the formula can be

viewed as a representation for the set of all states that make it true.

When sets of states are represented symbolically, state transitions are im-

plemented by formula transformations. A set of states is processed at once. In

model checking, the result of such transformation is usually defined as the set

of all states reachable by single transition from states in the input set. That

is, for a set of states X ⊆ Q

Transform(X) = ∪
x∈X
{δ(x, i)} for all i ∈ I for which δ(x, i) is defined

For example, the set of all states reachable from set X in k transitions can

be computed by k consecutive transformations of the formula representing X.

Similarly, model checking algorithms for various propositional temporal logics

can be defined in terms of state set transformer (see Chapter 5 in [28]).

The hope of symbolic techniques is that the time and space required for

71

CHAPTER 5. THEORETICAL BACKGROUND

formula manipulation is less than the time required for manipulation of states

represented explicitly as distinct data objects. To fulfil this hope, symbolic rep-

resentations of state sets must be supported by efficient algorithms for checking

emptiness of, intersecting, and otherwise transforming these representations.

Symbolic representations commonly used in model checking include

• Ordered Binary Decision Diagrams (OBDD) [18] and their variations.

• Propositional logic formulae in conjunction with efficient satisfability

checking algorithms [15].

Other representations such as regular expressions [50] and integer constraints

[20] are used in the domains where OBDDs and propositional formulae are

insufficiently expressive, such as verification of real time systems.

Symbolic model checkers have been reported to outperform explicit model

checkers by many orders of magnitude in the number of states which they can

handle (see [46]).

Reduction of the finite state machine model This group of techniques

is based on the observation that the analysis of a particular property often uses

only a part of the information contained in the model. In this case, the analysis

can be performed on a reduced model, in which the redundant information is

removed. The reduced model often requires less time and space to analyse.

However, the construction of the reduced model makes sense only if it can be

performed efficiently — only if the gain in the computing resources provided

by the reduced model is greater than the amount of computing resources spent

on its construction.

Several techniques for model reduction have been proposed in model check-

ing. The most successful examples are partial order reduction, and data ab-

straction.

72

CHAPTER 5. THEORETICAL BACKGROUND

Partial order reduction. In model checking, concurrent systems are

modeled using the interleaving model of concurrency described in Section 5.2.1.

The need to represent all possible interleavings of concurrent transitions can

make the model very large. For n concurrent transitions there are n! possible

interleavings. Partial order reduction is a technique for simplifying analysis of

such models.

Partial order reduction is based on the observation that many concurrent

transitions are independent from each other — they neither enable nor disable

each other, and they lead to the same global state irrespective of the order in

which they are executed. It turns out that to verify many properties it suffices

to consider only one possible ordering of independent transitions [27]. A model

checker that uses partial order reduction detects independent transitions, and

— if the property which is begin verified permits partial order reduction — it

considers only one interleaving of such transitions.

The use of partial order reduction for simplifying model checking was first

proposed in [67]. More general model checking algorithms based on the same

ideas appeared later in [78], [69], and [40].

Data Abstraction. Data abstraction is used for simplifying model check-

ing of systems that involve data processing. Data abstraction is based on the

observation that many specifications involve fairly simple relationships among

data values. In such cases, the large number of actual data values can be

mapped into a small number of abstract data values, which represent key

groups of actual data values. The model is then re-stated in terms of abstract

data values. The new model often has less states than the original model.

Figure 5.7 gives an illustration of data abstraction.

For a survey of “classical” abstraction techniques see Chapter 13 of [28].

Current research in this area concentrates on automatic derivation of abstract

models directly from the source code of industrial programming languages and

hardware-definition languages [26].

73

CHAPTER 5. THEORETICAL BACKGROUND

Figure 5.7: Data abstraction

5.3 Summary

This chapter defined formal notation used in the rest of the dissertation and

presented background information about the state machine model of compu-

tation and its application to analysis of computing systems. It was argued

that finite state machines and finite computations provide sufficient basis for

formalisation of event reconstruction in digital investigation. The next chapter

builds on the ideas presented in this chapter. It defines a formalism for de-

scribing evidence as properties of computations, and gives a formal definition

of event reconstruction problem.

74

