Chapter 3

Concepts of digital forensics

Digital forensics is a branch of forensic science concerned with the use of digital
information (produced, stored and transmitted by computers) as source of
evidence in investigations and legal proceedings. Digital Forensic Research

Workshop has defined digital forensics as

“The use of scientifically derived and proven methods toward the
preservation, validation, identification, analysis, interpretation, doc-
umentation and presentation of digital evidence derived from dig-
ital sources for the purpose of facilitating or furthering the recon-
struction of events found to be criminal, or helping to anticipate
unauthorized actions shown to be disruptive to planned opera-

tions.” [4]

This chapter introduces concepts of digital forensics and digital forensic anal-

ysis techniques described in the literature.

3.1 Investigative process

Investigative process of digital forensics can be divided into several stages.
According to [4] and [71], there are four major stages: preservation, collection,

examination, and analysis.

19

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

e Preservation. Preservation stage corresponds to “freezing the crime
scene”. It consists in stopping or preventing any activities that can dam-
age digital information being collected. Preservation involves operations
such as preventing people from using computers during collection, stop-
ping ongoing deletion processes, and choosing the safest way to collect

information.

e (Collection. Collection stage consists in finding and collecting digital in-
formation that may be relevant to the investigation. Since digital infor-
mation is stored in computers, collection of digital information means
either collection of the equipment containing the information, or record-
ing the information on some medium. Collection may involve removal of
personal computers from the crime scene, copying or printing out con-

tents of files from a server, recording of network traffic, and so on.

e FKramination. Examination stage consists in an “in-depth systematic
search of evidence” relating to the incident being investigated. The out-
put of examination are data objects found in the collected information.
They may include log files, data files containing specific phrases, times-

tamps, and so on.

e Analysis. The aim of analysis is to “draw conclusions based on evidence

found”.

Other works including [25], [19], and [72] proposed similar stages summarised
in Table 3.1.

The aims of preservation and collection are twofold. First they aim to pro-
vide examination and analysis with as much relevant information as possible.
Second they aim to ensure integrity of the collected information.

Preservation and collection are not discussed in this dissertation, because
this research is primarily concerned with the analysis stage of the investigative

process. In the rest of this dissertation it is simply assumed that all neces-

20

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

Stage Analogue in [25] | Analogue in [19] | Analogue in
[72]

preservation preservation preservation preservation

collection recognition, collection identification,
collection, retrieval
documentation

examination classification, formulating leads, | extraction,
comparison, focused searches | processing
individualisation

analysis reconstruction temporal analysis | interpretation

Figure 3.1: Stages of investigative process

sary information has been collected, and that the integrity of the collected
information has been preserved.

Interested readers can obtain more information about collection and preser-
vation stages of investigative process from the following sources. The best
practice guides, such as [3], [8], and [17], specify standard procedures and
check lists of things to be done by investigators during preservation and collec-
tion stages. An approach to testing correctness of tools used during collection
of information is described in [19]. A more formal approach is being devel-
oped by the U.S. National Institute for Standards and Technology (NIST) in
[60]. Methods for detecting tampering after collection are described in [12]

and [68]. They are based on checksumming and one-way hashing of collected

information.

3.2 Examination and analysis techniques

This section describes techniques and tools used at examination and analy-
sis stages. Techniques are grouped into subsections according to the type of

question they answer.

21

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

3.2.1 Search techniques

This group of techniques searches collected information to answer the question
whether objects of given type, such as hacking tools, or pictures of certain
kind, are present in the collected information. According to the level of search
automation, this dissertation classifies techniques into manual browsing and
automated searches. Automated searches include keyword search, regqular ex-
pression search, approrimate matching search, custom searches, and search of

modifications.

Manual browsing

Manual browsing means that the forensic analyst browses collected information
and singles out objects of desired type. The only tool used in manual browsing
is a viewer of some sort. It takes a data object, such as file or network packet,
decodes the object and presents the result in a human-comprehensible form.
Manual browsing is slow. Most investigations collect large quantities of
digital information, which makes manual browsing of the entire collected in-

formation unacceptably time consuming.

Keyword search

Keyword search is automatic search of digital information for data objects
containing specified key words. It is the earliest and the most widespread
technique for speeding up manual browsing. The output of keyword search is
the list of found data objects (or locations thereof).

Keywords are rarely sufficient to specify the desired type of data objects
precisely. As a result, the output of keyword search can contain false positives,
objects that do not belong to the desired type even though they contain speci-
fied keywords. To remove false positives, the forensic scientist has to manually
browse the data objects found by the keyword search.

Another problem of keyword search is false negatives. They are objects

22

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

of desired type that are missed by the search. False negatives occur if the
search utility cannot properly interpret the data objects being searched. It
may be caused by encryption, compression, or inability of the search utility to
interpret novel data format!.

A strategy for choosing key words and phrases is described in Chapter 6 of
[82]. In summary, it prescribes (1) to choose words and phrases highly specific

to the objects of the desired type, such as specific names, addresses, bank

account numbers; etc.; and (2) to specify all possible variations of these words.

Regular expression search

Regular expression search is an extension of keyword search. Regular expres-
sions described in [43] provide a more flexible language for describing objects
of interest than keywords. Apart from formulating keyword searches, regular
expressions can be used to specify searches for Internet e-mail addresses, and
files of specific type. Forensic utility EnCase [68] performs regular expression
searches.

Regular expression searches suffer from false positives and false negatives
just like keyword searches, because not all types of data can be adequately

defined using regular expressions.

Approximate matching search

Approximate matching search is a development of regular expression search. It
uses matching algorithm that permits character mismatches when searching for
keyword or pattern. The user must specify the degree of mismatches allowed.

Approximate matching can detect misspelled words, but mismatches also in-

1 There is a constant lag between development of new data formats and the ability
of forensic search tools to interpret them. An attempt to reduce time gap between
appearance of new data formats and their incorporation into search tools was
made in [36].

23

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

crease the number of false positives. One of the utilities used for approximate

search is agrep described in [83].

Custom searches

The expressiveness of regular expressions is limited. Searches for objects satis-
fying more complex criteria are programmed using a general purpose program-
ming language. For example, the FILTER_I tool from new Technologies Inc.
uses heuristic procedure described in [7] to find full names of persons in the
collected information. Most custom searches, including FILTER_I tool suffer

from false positives and false negatives.

Search of modifications

Search of modification is automated search for data objects that have been
modified since specified moment in the past.

Modification of data objects that are not usually modified, such as oper-
ating system utilities, can be detected by comparing their current hash with
their expected hash. A library of expected hashes must be build prior to the
search. Several tools for building libraries of expected hashes are described in
the “file hashes” section of [59].

Modification of a file can also be inferred from modification of its times-
tamp. Although plausible in many cases, this inference is circumstantial. In-
vestigator assumes that a file is always modified simultaneously with its times-
tamp, and since the timestamp is modified, he infers that the file was modified
too. This is a form of event reconstruction and is further discussed in the

following subsection.

3.2.2 Reconstruction of events

Search techniques are commonly used for finding incriminating information,

because “currently, mere possession of a digital computer links a suspect to all

24

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

the data it contains” (see page 10 of [4]).

However, the mere fact of presence of objects does not prove that the owner
of the computer is responsible for putting the objects in it. Apart from the
owner, the objects can be generated automatically by the system. Or they can
be planted by an intruder or virus program. Or they can be left by the previous
owner of the computer. To determine who is responsible, the investigator must
reconstruct events in the past that caused presence of the objects.

Reconstruction of events inside a computer requires understanding of com-
puter functionality. Many techniques emerged for reconstructing events in
specific operating systems. This dissertation classifies these techniques ac-
cording to the primary object of analysis. Two major classes are identified:

log file analysis and file system analysis.

Log file analysis

A log file is a purposefully generated record of past events in a computer
system. It is organised as a sequence of entries. A log file entry usually
consists of a timestamp, an identifier of the process that generated the entry,
and some description of the reason for generating an entry.

It is common to have multiple log files on a single computer system. Dif-
ferent log files are usually created by the operating system for different types
of events. In addition, many applications maintain their own log files.

Log file entries are generated by the system processes when something
important (from the process’s point of view) happens. For example, a TCP
wrapper process described in [72] generates one log file entry when a TCP
connection is established and another log file entry when the TCP connection
is released.

The knowledge of circumstances, in which processes generate log file entries,
permits forensic scientist to infer from presence or absence of log file entries
that certain events happened. For example, from presence of two log file entries

generated by TCP wrapper for some TCP connection X, forensic scientist can

25

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

conclude that
e TCP connection X happened
e X was established at the time of the first entry
e X was released at the time of the second entry

This reasoning suffers from implicit assumptions. It is assumed that the log file
entries were generated by the TCP wrapper, which functioned according to the
expectations of the forensic scientist; that the entries have not been tampered
with; and that the timestamps on the entries reflect real time of the moments
when the entries were generated. It is not always possible to ascertain these
assumptions, which results in several possible explanations for appearance of
the log file entries. For example, if possibility of tampering cannot be ex-
cluded, then forgery of the log file entries could be a possible explanation for
their existence. The problem of uncertainty in digital evidence is discussed at
length in [24]. To combat uncertainty caused by multiple explanations, foren-
sic analyst seeks corroborating evidence, which can reduce number of possible

explanations or give stronger support to one explanation than another.

Determining temporal order with timestamps. Timestamps on log file
entries are commonly used to determine temporal order of entries from different
log files. The process is complicated by two time related problems, even if the
possibility of tampering is excluded.

First problem may arise if the log file entries are recorded on different com-
puters with different system clocks. Apart from individual clock imprecision,
there may be an unknown skew between clocks used to produce each of the
timestamps. If the skew is unknown, it is possible that the entry with the
smaller timestamp could have been generated after the entry with the bigger
timestamp.

Second problem may arise if resolution of the clocks is too coarse. As a

26

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

result, the entries may have identical timestamps, in which case it is also not

possible to determine whether one entry was generated before the other.

File system analysis

Log files is not the only source of evidence that can be used for event recon-
struction. Other data objects can also be used. This subsection describes
how structural information stored by the file system can be used for event
reconstruction.

In most operating systems, a data storage device is represented at the
lowest logical level by a sequence of equally sized storage blocks that can be
read and written independently. Most file systems divide all blocks into two
groups. One group is used for storing user data, and the other group is used
for storing structural information.

Structural information includes structure of directory tree, file names, lo-
cations of data blocks allocated for individual files, locations of unallocated
blocks, etc. Operating system manipulates structural information in a certain

well-defined way that can be exploited for event reconstruction.

Detection of deleted files. Information about individual files is stored
in standardised file entries whose organisation differs from file system to file
system. In Unix file systems, the information about a file is stored in a com-
bination of i-node and directory entries pointing to that i-node. In Windows
NT file system (NTFS), information about a file is stored in an entry of the
Master File Table.

When a disk or a disk partition is first formatted, all such file entries are
set to initial “unallocated” value. When a file entry is allocated for a file, it
becomes active. Its fields are filled with proper information about the file. In
most file systems, however, the file entry is not restored to the “unallocated”
value when the file is deleted. As a result, presence of a file entry whose value

is different from the initial “unallocated” value, indicates that that file entry

27

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

once represented a file, which was subsequently deleted.

File attribute analysis. Every file in a file system — either active or deleted
— has a set of attributes such as name, access permissions, timestamps and
location of disc blocks allocated to the file. File attributes change when appli-
cations manipulate files via operating system calls.

File attributes can be analysed in much the same way as log file entries.
Timestamps are a particularly important source of information for event re-
construction. In most file systems a file has at least one timestamp. In NTFS,
for example, every active (i.e. non-deleted) file has three timestamps, which

are collectively known as MAC-times.
e Time of last Modification (M)
e Time of last Access (A)
e Time of Creation (C)

Imagine that there is a log file that records every file operation in the computer.
In this imaginary log file, each of the MAC-times would correspond to the last
entry for the corresponding operation (modification, access, or creation) on the
file entry in which the the timestamp is located. To visualise this similarity
between MAC-times and the log file, the mactimes tool from the coroner’s
toolkit [34] sorts individual MAC-times of files — both active and deleted —
and presents them in a list, which resembles a log file.

Signatures of different activities can be identified in MAC-times like in
ordinary log files. Given below are several such signatures, which have been

published.

Restoration of a directory from a backup. According to [10], the
fact that a directory was restored from a backup can be detected by inequality
of timestamps on the directory itself and on its sub-directory “.” or ‘..”. When

the directory is first created, both the directory timestamp and the timestamp

28

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

[

on its sub-directories *.” and ‘..” are equal. When the directory is restored

from a backup, the directory itself is assigned the old timestamp, but its sub-

b

directories ‘.” and ‘..” are timestamped with the time of backup restoration.

Exploit compilation, running, and deletion. In [79], the signature
of compiling, running, and deleting an exploit program is explored. It is con-
cluded that “when someone compiles, runs, and deletes an exploit program,
we expect to find traces of the deleted program source file, of the deleted

executable file, as well as traces of compiler temporary files.”

Moving a file. When a file is being moved in Microsoft FAT file sys-
tems, the old file entry is deleted, and a new file entry is used in the new
location. According to [74], the new file entry maintains same block allocation
information as the old entry. Thus, the discovery of a deleted file entry, whose
allocation information is identical to some active file, supports possibility that

the file was moved.

Reconstruction of deleted files. In most file systems file deletion does not
erase the information stored in the file. Instead, the file entry and the data
blocks used by the file are marked as unallocated, so that they can be reused
later for another file. Thus, unless the data blocks and the deleted file entry
have been re-allocated to another file, the deleted file can usually be recovered
by restoring its file entry and data blocks to active status.

Even if the file entry and some of the data blocks have been re-allocated, it
may still be possible to reconstruct parts of the file. The lazarus tool described
in [35], for example, uses several heuristics to find and piece together blocks
that (could have) once belonged to a file. Lazarus uses the following heuristics

about file systems and common file formats.
e In most file systems, a file begins at the beginning of a disk block;

e Most file systems write file into contiguous blocks, if possible;

29

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

e Most file formats have a distinguishing pattern of bytes near the begin-

ning of the file;
e For most file formats, same type of data is stored in all blocks of a file.

Lazarus analyses disc blocks sequentially. For each block, lazarus tries to
determine (1) the type of data stored in the block — by calculating heuristic
characteristics of the data in the block; and (2) whether the block is a first
block in a file — using well known file signatures. Once the block is determined
as a “first block”, all subsequent blocks with the same type of information are
appended to it until new “first block” is found.

This process can be viewed as a very crude and approximate reconstruction
based on some knowledge of the file system and application programs. Each
reconstructed file can be seen as a statement that that file was once created
by an application program, which was able to write such a file.

Since lazarus makes very bold assumptions about the file system, its recon-
struction is highly unreliable, which is acknowledged by [35]. Despite that fact,
[35] states that lazarus works well for small files that fit entirely in one disk
block. The effectiveness of tools such as lazarus can probably be improved by
using more sophisticated techniques for determining the type of information
contained in a disk block. One such technique that employs support vector

machines has been recently described in [31].

3.2.3 Time analysis

Timestamps are readily available source of time, but they are easy to forge.
Several attempts have been made to determine time of event using sources
other than timestamps. Currently, two such methods have been published.

They are time bounding and dynamic time analysis.

30

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

Time bounding

It was shown in Section [3.2.2 that timestamps can be used for determining
temporal order of events. The inverse of this process is also possible — if the
temporal order of events is known a priori, then it can be used to estimate
time of events. Suppose that three events A, B, and C' happened. Suppose
also that it is known that event A happened before event B, and that event B
happened before event C'. The time of event B must, therefore, be bounded
by the times of events A and C'.

An example of time bounding is given in [72]. It considers a telnet session,
which is carried over a TCP connection. The times of establishing and releasing
the TCP connection are recorded by the TCP wrapper. Since (1) the TCP
connection has to be established before the telnet session can be started, and
(2) the telnet session must terminate before or together with the termination
of the TCP connection, the time of the telnet connection is bounded by the
times recorded by the TCP wrapper. This reasoning is illustrated in Figure

3.2l

Dynamic time analysis

A different approach to using external sources of time is described in [80]. Tt
exploits the ability of web servers to insert timestamps into web pages, which
they transmit to the client computers. As a result of this insertion, a web page
stored in a web browser’s disk cache has two timestamps. The first timestamp
is the creation time of the file, which contains the web page. The second
timestamp is the timestamp inserted by the web server.

According to [80], the offset between the two timestamps of the web page
reflects the deviation of the local clock from the real time. It is proposed to use
that offset to calculate the real time of other timestamps on the local machine.
To improve precision, it is proposed to use the average offset calculated for a

number of web pages downloaded from different web servers.

31

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

4. TCP
connection

terminated

Telnet
session

2. Telnet
session
started

terminated

Telnet daemon

TCP wrapper

1. TCP 3 §
connection 1 TCP layer §
established "

i Lower network layers |
_connection | | A
2. Telnet 3. Telnet
session session
started terminated
1. TCP ‘ 4. TCP
connection ‘ connection
established terminated
| | I
t, t, £, L time

Causality between events allows to
conclude that

tl ¢ t gt «t

Figure 3.2: An example of time bounding

32

CHAPTER 3. CONCEPTS OF DIGITAL FORENSICS

This analysis assumes that (1) timestamps are not tampered with, and that
(2) the offset between system clock and real time is constant at all times (or

at least that it does not deviate dramatically).

3.3 Summary

This chapter presented a review of digital forensic concepts. It identified the
stages of digital investigative process and described the major types of digital
forensic techniques used for examination and analysis of digital evidence.

As a final point, note that the need for effective and efficient digital forensic
analysis has been a major driving force in the development of digital forensics.
Manual browsing was initially the only way to do digital forensics. It was later
augmented with various search utilities and, more recently, with tools such as
mactimes and lazarus that support more in-depth analysis of digital evidence.
Due to the limited time and manpower available to a forensic investigation,
there is a constant demand for tools and techniques that increase the accuracy
of digital forensic analysis and minimise the time required for it.

The next chapter looks in more detail at the problem of event reconstruction
in digital investigations. It explains why a theory of event reconstruction
is required in digital forensics, analyses the state of the relevant art, and,

ultimately, formulates the research problem addressed in this dissertation.

33

